Neural Networks and Differential Equations: From Infinite Layers to Continuous Modelling

у

Cecília Coelho^{1,3}, Luís Ferrás^{2,3} Bernd Zimmering¹

¹Institute for Artificial Intelligence, Helmut Schmidt University, Hamburg, Germany ²CEFT and DEMec (Section of Mathematics) - FEUP, University of Porto, Portugal ³Centre of Mathematics (CMAT), University of Minho, Portugal cecilia.coelho@hsu-hh.de, Iferras@fe.up.pt

Outline of the Tutorial

- Introduction to Differential Equations
 - What are Differential Equations
 - Solving Differential Equations
 - Differential Equations in Real life
- Neural Networks for Solving Differential Equations
 - Challenges of Numerical Methods
 - Physics-Informed Neural Networks
 - Hands-on with the DeepXDE Library
- Neural Networks for Modelling Differential Equations
 - Challenges on Differential Equations Formulation for Describing Real-world Systems
 - Neural Ordinary Differential Equations
 - Hands-on with the Torchdiffeq Library
- Wrap-up
 - Physics-Informed Neural Networks versus Neural Ordinary Differential Equations
 - What's Next? (Neural Operators, Neural Laplace, etc.)

Outline of the Tutorial 1/10

Availability of the Materials

All material can be found at the official tutorial's website, including a jupyter notebook with the coding examples and hands-on that will be used.

https://nnde-ecai.github.io/

Informations 2/10

Introduction to Differential Equations

- What are Differential Equations
- Solving Differential Equations
- Differential Equations in Real life

Let's look at a simple, classic example of building a mathematical model to describe the evolution over time of a certain population (human, animal species, bacterial, etc.).

Suppose that the number of individuals in a certain population at a given time *t* is given by

$$P(t), (1)$$

that is, P(t) represents a function of time (the population as a function of time). To develop the model, let's fix a certain time interval

$$[t, t + \Delta t]. \tag{2}$$

For example, if t=1 hour and $\Delta t=4$ hours, the interval would be [1; 5]. We will try to find a relationship between the population at time t (P(t)) and the population at time $t + \Delta t$ ($P(t + \Delta t)$).

4/107

What happens during this time interval is that there was a certain number of deaths (*M*) and a certain number of births (*N*). Our common sense suggests that:

The larger the population, the higher the number of deaths and births (e.g., if in a population of 1000 individuals we have 10 deaths, then in a population of 2000 individuals we would expect 20 deaths). In other words, the number of deaths (*M*) and births (*N*) is proportional to the number of individuals (*P*(*t*)):

$$N = \alpha P(t), \quad M = \beta P(t)$$
 (3)

- where α and β ($\in \mathbb{R}^+$) are the proportionality constants, which may vary from population to population.
- It is also expected that N and M depend on the time interval Δt . That is, the longer the time interval, the greater the number of births and deaths.

This double dependency of N and M on P(t) and Δt can then be expressed as:

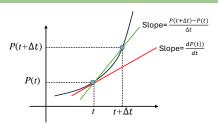
$$N = \alpha P(t)\Delta t, \quad M = \beta P(t)\Delta t.$$
 (4)

Consequently, the change in population over the time interval $[t, t + \Delta t]$ is given by $P(t + \Delta t) - P(t) = N - M$, that is:

$$P(t + \Delta t) - P(t) = (\alpha - \beta)P(t)\Delta t. \tag{5}$$

Dividing both sides by Δt , we obtain the following equation:

$$\frac{P(t+\Delta t) - P(t)}{\Delta t} = (\alpha - \beta)P(t). \tag{6}$$



Taking the limit as $\Delta t \rightarrow 0$, we obtain the following differential equation:

$$\frac{dP}{dt} = (\alpha - \beta)P(t),\tag{7}$$

which is the well-known Malthusian equation, describing the expected variation (model) of population growth $(\alpha > \beta)$ or decline $(\alpha < \beta)$. Often, the notation P'(t) is used instead of $\frac{dP}{dt}$.

Introduction to Differential Equations

Let $k=\alpha-\beta$, then ce^{kt} with $c\in\mathbb{R}$ an arbitrary constant, is the solution of our problem:

$$\frac{dP}{dt} = kP(t),\tag{8}$$

If we denote by P_0 the number of individuals at the beginning of the study ($t_0 = 0$), $P(0) = P_0$, then the solution to the model is given by (the arbitrary constant become a specific value: P_0):

$$P(t) = P_0 e^{kt} (9)$$

Introduction to Differential Equations

8/107

The differential equation $\frac{dP}{dt} = kP(t)$ together with the initial condition $P(0) = P_0$ is known as an **Initial Value Problem**.

This differential equation, which represents the Malthusian model, can also be written in the form:

$$\frac{dy(x)}{dx} = ky(x) \quad \text{or} \quad y' = ky$$

where the typical notation of x and y is used. From now on, we will preferably use this notation, where y is a function of x, with x being the independent variable.

A differential equation is an equality that involves a function of one or more variables and its derivatives up to a certain order.

Example

$$x^{2} \frac{d^{2}y}{dx^{2}} - xy \left(\frac{dy}{dx}\right)^{4} = 0 \quad \text{or} \quad x^{2}y'' - xy(y')^{4} = 0$$
 (10)

$$y' = y \tag{11}$$

$$y'' + 2yy' = 3x \tag{12}$$

$$\frac{d^3v}{dt^3} + 5v\frac{dv}{dt} = \cos t \quad \text{or} \quad v''' + 5vv' = \cos t \tag{13}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + 2\frac{\partial^2 u}{\partial z^2} = 0 \tag{14}$$

Introduction to Differential Equations

Definition (Ordinary Differential Equation (ODE))

A differential equation involving derivatives of one or more dependent variables with respect to an independent variable is called an ordinary differential equation (ODE).

Definition (Partial Differential Equation (PDE))

is a differential equation that involves partial derivatives of a multivariable function. A **PDE** involves one or more dependent variables and their partial derivatives with respect to two or more independent variables.

Example: For a function u(x, y), a PDE might look like:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

This is known as the **Laplace equation**, which appears in heat conduction, fluid flow, and electrostatics.

- The theory of differential equations began in the late 17th century, influenced by the works of G.W. Leibniz, I. Barrow, I. Newton, and the Bernoulli brothers, who solved simple first and second-order equations in mechanics and geometry. A notable milestone occurred on November 11, 1675, when Leibniz solved the equation $\frac{dy}{dx} = x$, using the integral symbol (\int).
 - The Malthus model is a simple ODE known as a separable variable differential equation. Its solution can be easily derived, as described in the following equations.

Assuming that $P \neq 0$, we start with:

$$\frac{dP}{dt} = kP \Leftrightarrow \frac{1}{P} dP = k dt, \tag{15}$$

Next, we apply the integral to both sides of the equation:

$$\int \frac{1}{P} dP = \int k dt \Rightarrow \ln|P| = kt + c_1 \Rightarrow P(t) = c_2 e^{kt}, \tag{16}$$

where c_1 and c_2 are constants, with $c_2 \in \mathbb{R}_0^+$.

Introduction to Differential Equations 12/107

- Newton's equation of motion was pivotal in developing calculus, categorizing first-order equations into forms such as $\frac{dy}{dx} = f(x, y)$. Leibniz introduced the notation for derivatives and integral, and he developed the theory of **separable differential equations** and discovered methods for solving **linear first-order equations**.
- The 18th century saw significant advancements in the theory of differential equations, with contributions from Jacob and Johann Bernoulli, as well as prominent mathematicians like Clairaut, D'Alembert, and Euler. Euler established conditions for **exact first-order equations** and developed the theory of **integrating factors**.
- In the 19th century, Dirichlet proved the convergence of Fourier series, and Cauchy rigorously defined convergence concepts. Liouville established the limitations of solving differential equations using elementary functions, while the works of Picard and Peano addressed the existence and uniqueness of solutions for initial value problems.
- The second half of the 20th century witnessed advancements in computational methods for solving differential equations, thanks to the contributions of Carl Runge and Martin Kutta.

Introduction to Differential Equations 13/1

Engineering

Engineers apply scientific and mathematical principles to design, build and analyze systems. Their work is mostly practical and oriented towards solving real-world problems.

Applied Mathematics

Applied mathematicians use mathematical techniques and theories to solve practical problems in various fields. They focus on modeling real-world phenomena and finding numerical solutions.

Pure Mathematics

Pure mathematicians study mathematical concepts for their intrinsic value, without necessarily considering practical applications. They are more concerned with exploring theoretical aspects of mathematics.

The three fields are all essential because they approach problems differently.

- Pure mathematicians focus on determining whether a mathematical solution exists and under what conditions it can be applied.
- In contrast, engineers assume that a solution exists and immediately begin working on finding an exact or approximate solution to the problem.

For example, mathematicians are concerned with the following type of results for differential equations:

Theorem (Existence and Uniqueness of Solution)

Consider the differential equation

$$\frac{dy}{dx} = f(x, y)$$

where

- 1. The function f is continuous in a domain D of the xy-plane;
- 2. The partial derivative $\frac{\partial f}{\partial y}$ is also continuous in D.

Let (x_0, y_0) be a point in D. Then the differential equation has a unique solution ϕ in the interval $]x_0 - h, x_0 + h[$ (or $|x - x_0| < h$), for sufficiently small h, which satisfies the condition

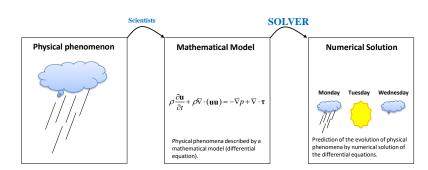
$$\phi\left(\mathbf{x}_{0}\right) =\mathbf{y}_{0}.$$

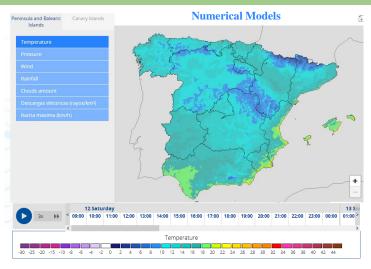
We previously discussed how to find the analytical solution to the equation

$$\frac{dP}{dt} = kP(t)$$

with the initial condition $P(0) = P_0$.

However, not all differential equations are this straightforward. In many cases, we must rely on **numerical solutions** to solve more complex equations!





Please note that while we can obtain weather forecasts for every hour, we cannot provide a forecast for a specific time, such as 10:36.

Introduction to Differential Equations 18/107

Consider the simple differential equation,

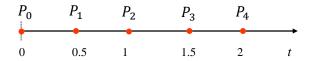
$$\frac{dP}{dt} = kP(t)$$

with the initial condition $P(0) = P_0$. We will now obtain its numerical solution!

For that we need to define the kind of approximation we will use, that is, the numerical method:

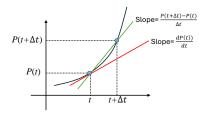
- Finite Difference (FD)
- Finite Volume (FV)
- Finite Elements (FE)
- other methods ...

- Define an interval: [0, 2]
- Create a mesh: we will consider 5 mesh elements (4 intervals of 0.5) $\Delta t = 0.5$



- Initial condition: $P(0) = P_0 = 2$
- Let: k = 1
- **Objective**: determine the discrete solution P_1, P_2, P_3, P_4

Obtain approximations for $\frac{dP}{dt}$ at $t_1 = 0.5$, $t_2 = 1$, $t_3 = 1.5$, $t_4 = 2$



- $\frac{dP(t_i)}{dt} \approx \frac{P_i P_{i-1}}{\Delta t}, i = 1, ..., 4$
- Solve the system of equations (Explicit Euler Method):

$$\frac{P_1 - Po}{\Delta t} = P_0 \Leftrightarrow P_1 = P_0 + \Delta t P_0$$

$$P_2 = P_1 + \Delta t P_1$$

$$P_3 = P_2 + \Delta t P_2$$

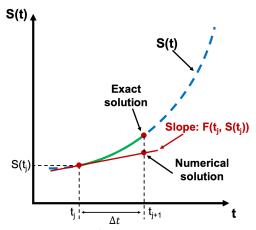
$$P_4 = P_3 + \Delta t P_3$$

Let $\frac{dS(t)}{dt} = F(t,S(t))$ be an explicitly defined first order ODE. That is, F is a function that returns the derivative, or change, of a state given a time and state value. Also, let t_i be a numerical grid point of the interval $[t_0,t_f]$ with spacing Δt . Without loss of generality, we assume that $t_0=0$, and that $t_f=N\Delta t$ for some positive integer, N. We then approximate the solution at $S(t_{i+1})$ by:

$$S(t_{j+1}) = S(t_j) + (t_{j+1} - t_j) \frac{dS(t_j)}{dt}$$

which can also be written as

$$S(t_{j+1}) = S(t_j) + \Delta t \, F(t_j, S(t_j))$$



https://pythonnumericalmethods.studentorg.berkeley.edu

Implicit Euler Method:

$$S(t_{j+1}) = S(t_j) + \Delta t F(t_{j+1}, S(t_{j+1}))$$

for our previous example, we obtain the following system of equations:

$$\frac{P_1 - P_0}{\Delta t} = kP_1$$

$$\frac{P_2 - P_1}{\Delta t} = kP_2$$

$$\frac{P_3 - P_2}{\Delta t} = kP_3$$

$$\frac{P_4 - P_3}{\Delta t} = kP_4$$

The system can be rewritten as:

$$(1 - k\Delta t)P_1 = P_0,$$

$$-P_1 + (1 - k\Delta t)P_2 = 0,$$

$$-P_2 + (1 - k\Delta t)P_3 = 0,$$

$$-P_3 + (1 - k\Delta t)P_4 = 0.$$

In matrix form, for the unknowns $\mathbf{P} = [P_1, P_2, P_3, P_4]^T$, this becomes:

$$\begin{bmatrix} 1 - k\Delta t & 0 & 0 & 0 \\ -1 & 1 - k\Delta t & 0 & 0 \\ 0 & -1 & 1 - k\Delta t & 0 \\ 0 & 0 & -1 & 1 - k\Delta t \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix} = \begin{bmatrix} P_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Its now time for you to do it by yourselves (Part I)!

The differential equation $\frac{df(t)}{dt}=e^{-t}$ with initial condition f(0)=-1 has the exact solution $f(t)=-e^{-t}$. Approximate the solution to this initial value problem between 0 and 1 in increments of 0.1 using the **Explicit Euler method**. Plot the difference between the approximated solution and the exact solution.

Play with the **solver**, **model parameters** and the **number of mesh elements**.

https://github.com/NNsDEsTutorial/NNsDEsTutorial.github.io

Its now time for you to do it by yourselves (Part I)!

```
import numpy as np
import matplotlib.pyplot as plt
# Define parameters
f = lambda t, s: np.exp(-t) # ODE
h = 0.3 \# Step size
t = np.arange(0, 1 + h, h) # Numerical grid
s0 = -1 # Initial Condition
# Explicit Euler Method
s = np.zeros(len(t))
s[0] = s0
for i in range(0, len(t) - 1):
s[i + 1] = s[i] + h*f(t[i], s[i])
```

Cont.

```
plt.figure(figsize = (6, 5))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()
```

Its now time for you to do it by yourselves (Part II)! You do not need to implement the numerical solver, Python can easily deal with that:

Consider a population of organisms that follows a logistic growth. The population size P(t) at time t is governed by the following differential equation:

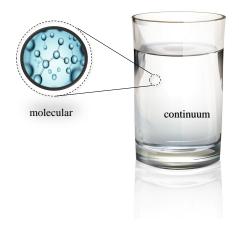
$$P'(t) = rP(t)\left(1 - \frac{P(t)}{K}\right), \quad P(t_0) = 100,$$
 (17)

where r is the growth rate, and K is the carrying capacity of the environment. Consider r=0.1, K=1000. Also, consider a mesh of 200 points.

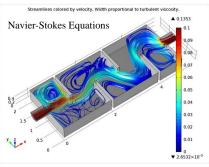
Play with the solver, model parameters and the number of mesh elements.

oduction to Differential Equations 29/107

Most interesting real life applications are modelled by the **Partial Differential Equations**



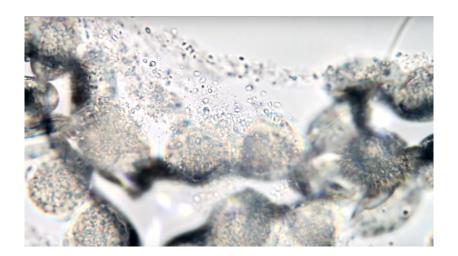
Most interesting real life applications are modelled by the **Partial Differential Equations**



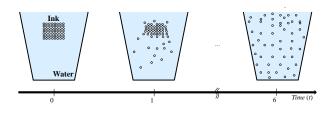
They are used by engineers and physicists all over the world in many fields, which go from aircraft design to blood circulation. They are also very complicated to solve and that is why they are one of the seven <u>Millennium Prize</u> <u>Problem</u>. Solving one of these problems will win you a million dollars

$$\nabla \cdot \overline{u} = 0$$

$$\rho \frac{D\overline{u}}{Dt} = -\nabla p + \mu \nabla^2 \overline{u} + \rho \overline{F}$$



Diffusion can be seen as a transport phenomena where distribution, mixing or transport of mass/particles occurs without requiring bulk motion (the spreading of something more widely).



$$\frac{\partial u(t,x)}{\partial t} = D \frac{\partial^2 u(t,x)}{\partial x^2} \ (1D) \tag{18}$$

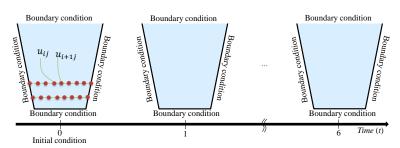
$$\frac{\partial u(t,x,y)}{\partial t} = D\left(\frac{\partial^2 u(t,x,y)}{\partial x^2} + \frac{\partial^2 u(t,x,y)}{\partial y^2}\right) (2D)$$
 (19)

Introduction to Differential Equations

Neural Networks for Solving DE

- Challenges of Numerical Methods
- Physics-Informed Neural Networks
- Hands-on with the DeepXDE Library

Challenges of Numerical Methods



Explicit

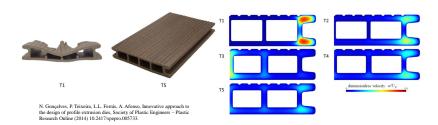
$$\frac{\partial u}{\partial t} = D\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) - \begin{bmatrix} u_{ij}^{n+1} - u_{ij}^n \\ \frac{\partial u}{\partial x} \end{bmatrix} = D\left(\frac{u_{i+1j}^n - 2u_{ij}^n + u_{i-1j}^n}{\triangle x^2} + \frac{u_{ij+1}^n - 2u_{ij}^n + u_{ij-1}^n}{\triangle y^2}\right)$$
Implicit

$$\frac{u_{ij}^{n+1}-u_{ij}^n}{\triangle t} = D \left(\frac{u_{i+1j}^{n+1}-2u_{ij}^{n+1}+u_{i-1j}^{n+1}}{\triangle x^2} + \frac{u_{ij+1}^{n+1}-2u_{ij}^{n+1}+u_{ij-1}^{n+1}}{\triangle y^2} \right)$$

Solve a system of equations for each time step

Challenges of Numerical Methods

There are several numerical methods and different solvers for solving differential equations, but nearly all of them share one major drawback — **they are time and memory-consuming!** Simulations can sometimes take months to complete.



Two Paradigms

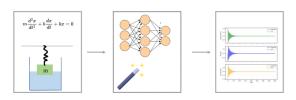
Solving differential equations

- Complete knowledge of the system;
- Exact solutions can be found but not often;
- Numerical solutions involve numerical methods;
- Used for finding the exact solutions for ODEs and PDEs in physics and engineering, where the system's behavior is well-defined mathematically.

Modelling differential equations

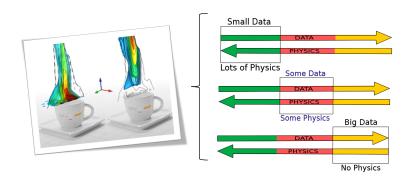
- Fully or partially unknown governing equations;
- Requires observed data to adjust the parameters or functions to match the data;
- Involves traditional optimization methods;
- Used for modeling systems in epidemiology, ecology, finance, and others.

Neural Networks for Solving DEs



- Real systems in physics, chemistry and engineering are typically described by differential equations;
- When differential equations are known, numerically solving them can be computationally prohibitive [11];
- Physics-Informed Neural Networks (PINNs) use a neural network to approximate the curve of solutions [11];
- PINNs offer a faster and more cost-effective alternative to numerical methods when doing predictions [11].

Physics-Informed Neural Networks



Raissi, M., Perdikaris, P., Ahmadi, N., & Karniadakis, G. E. (2024). Physics-informed neural networks and extensions. arXiv preprint arXiv:2408.16806.

Cai, S., Wang, Z., Fuest, F., Jeon, Y. J., Gray, C., & Karniadakis, G. E. (2021). Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. *Journal of Fluid Mechanics*, 915, A102.

Physics-Informed Neural Networks

Consider a parameterised and nonlinear partial differential equation (PDE) of the general form:

$$\frac{\partial u(t,x)}{\partial t} + \mathcal{N}[u;\lambda] = 0, \quad x \in \Omega, t \in [0,T], \tag{20}$$

where u(t,x) is the solution, $\mathcal{N}[u;\lambda]$ is a differential operator and Ω the domain of x. This setup encapsulates a wide range of problems in mathematical physics including conservation laws, diffusion processes, advection–diffusion–reaction systems, and kinetic equations.

PINNs - 1D Burger's Equation

As a motivating example, take the 1D Burger's equation, corresponding to $\mathcal{N}[u;\lambda] = \lambda_1 u \frac{du}{dx} - \lambda_2 \frac{\partial^2 u}{\partial x^2}$:

$$\frac{\partial u}{\partial t} + \lambda_1 u \frac{\partial u}{\partial x} - \lambda_2 \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in \Omega, t \in [0, T].$$
 (21)

This equation arises in various areas of applied mathematics, including fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. For small values of the viscosity parameters λ_1,λ_2 , it is hard to solve by numerical methods.

Given noisy measurements of the system, we are interested in the solution of two distinct problems: data-driven solutions of PDEs, and data-driven discovery of PDEs [11].

Data-driven Solutions of PDEs

Problem: Given fixed model parameters λ , what can be said about the unknown u(t,x)?

PINNs approximate the solution u(t,x) using a neural network $\hat{u}(t,x;\theta)$, where θ represents the network parameters. The PINN is trained to fit the data (u_n) and satisfy the PDE, given by Eq. (20) [11]. This can be formulated as a constrained optimisation problem:

minimize
$$\theta \in \mathbb{R}^{n_{\theta}}$$
 $l(\theta) = \frac{1}{N} \sum_{n=1}^{N} (\hat{u}_n(\theta) - u_n)^2$ (22) subject to $\frac{\partial u(t,x)}{\partial t} + \mathcal{N}[u;\lambda] = 0, \ t = [0,T],$

Data-driven Solutions of PDEs

To do this, we can rewrite the constrained problem (22) into an unconstrained problem by using a penalty method [10]:

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \quad l(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} (\hat{u}_n(\boldsymbol{\theta}) - u_n)^2 + \mu \left(\frac{\partial u(t, x)}{\partial t} + \mathcal{N}[u; \lambda] \right) \tag{23}$$

Then, the loss function of the neural network $\hat{u}(t,x;\theta)$ consists of two components: the error of the fit to the data, and the violation of the PDE constraint multiplied by a weighting factor μ [11].

Data-driven Solutions of PDEs

To train the neural network $\hat{u}(x; \theta)$, data is needed. Collocation points are crucial in training PINNs and these are taken from locations to enforce the PDE's loss term. Likewise, initial and boundary training data are used to fit the data:

- Collocation points, N_{PDE}: scattered points within the domain where the PDE is enforced;
- Initial/boundary points, N_u: points where the solution is known to enforce initial and boundary conditions [11].

Consider the 1D Burger's Equation with Dirichlet boundary conditions and $\lambda_1=1, \lambda_2=\frac{0.01}{\pi}$ [11]:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \frac{0.01}{\pi} \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in [-1, 1], t \in [0, 1],$$
$$u(0, x) = -\sin(\pi x),$$
$$u(t, -1) = u(t, 1) = 0.$$

First, we define the penalty term as $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \frac{0.01}{\pi} \frac{\partial^2 u}{\partial x^2}$ and build the loss function:

minimize
$$l(\theta) = \frac{1}{N_u} \sum_{n=1}^{N_u} (\hat{u}_n(\theta) - u_n)^2 + \frac{1}{N_{PDE}} \sum_{n=1}^{N_{PDE}} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \frac{0.01}{\pi} \frac{\partial^2 u}{\partial x^2} \right)$$
 (24)

Then we proceed by approximating u(t,x) by a neural network [11].

To compute the derivatives of u(t,x), PINNs use backpropagation [11].

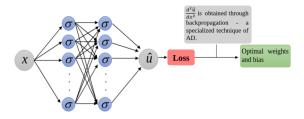


Figure 1: Schematic of the methodology used in the PINN method.

First, the DeepXDE and TensorFlow modules are imported:

```
import deepxde as dde
from deepxde.backend import tf
```

Then we start by defining the geometry and time domain of the problem using the built-in classes [11, 9]:

```
geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
```

Next, we code the PDE:

```
def pde(x, u):
    du_x = dde.grad.jacobian(u, x, i=0, j=0)
    du_t = dde.grad.jacobian(u, x, i=0, j=1)
    du_xx = dde.grad.hessian(u, x, i=0, j=0)

return du_t + u * du_x - 0.01 / np.pi * du_xx
```

The first argument x is a vector in which the first component is the x-coordinate and the second component is the t-coordinate. The second argument u is the output given by the neural network [11, 9].

Then we define the initial and boundary conditions using the geometry and time domains previously defined:

```
bc = dde.icbc.DirichletBC(geomtime, lambda x: 0,
lambda _, on_boundary: on_boundary)
ic = dde.icbc.IC(geomtime, lambda x: -np.sin(np.pi *
x[:, 0:1]), lambda _, on_initial: on_initial)
```

The first argument x is a vector in which the first component is the x-coordinate and the second component is the t-coordinate. The second argument u is the output given by the neural network [11, 9].

Now, we have specified the geometry, PDE, and initial and boundary conditions. Thus we define the time-dependent PDE problem using the built-in function:

```
data = dde.data.TimePDE(geomtime, pde, [bc, ic],
num_domain=2540, num_boundary=80, num_initial=160)
```

The number 2540 is the number of training points sampled inside the domain, N_{PDE} . The number 80 is the number of training points sampled on the boundary and 160 are the initial points for the initial conditions, N_u [11, 9].

Next we define a neural network architecture. Here, we use a fully connected neural network of depth 4 and width 20:

```
net = dde.nn.FNN([2] + [20] * 3 + [1], "tanh",
"Glorot normal")
```

Then we build the network and choose an optimiser [11, 9]:

```
model = dde.Model(data, net)
model.compile("adam", lr=1e-3)
```

We then train the model for 15000 iterations:

```
losshistory, train_state = model.train(iterations=15000)
```

After we train the network using Adam, we continue to train the network using L-BFGS to achieve a smaller loss [11, 9]:

```
model.compile("L-BFGS-B")
losshistory, train_state = model.train()
```

Having some test data taken from a reference solution of the 1D Burger's Equation, we can compute the testing metrics [11, 9]:

```
def gen_testdata():
    data = np.load("Burgers.npz")
    t, x, exact = data["t"], data["x"], data["usol"].T
    xx, tt = np.meshgrid(x, t)
    X = np.vstack((np.ravel(xx), np.ravel(tt))).T
    y = exact.flatten()[:, None]
    return X, y
X, y_true = gen_testdata()
y_pred = model.predict(X)
f = model.predict(X, operator=pde)
print("Mean residual:", np.mean(np.absolute(f)))
print("L2 relative error:",
dde.metrics.l2_relative_error(y_true, y_pred))
np.savetxt("test.dat", np.hstack((X, y_true, y_pred)))
```

Hands-On

- What happens if we change the number of training points inside the domain? What about in the inital and boundary conditions?
- Use PINNs to approximate the solution of the following Lotka-Volterra problem to know how the population of rabbits and foxes change over time in a system:

$$\frac{dr}{dt} = \frac{R}{U}(2Ur - 0.04U^2rf), \quad \frac{df}{dt} = \frac{R}{U}(0.002U^2rf - 1.06Uf),$$
$$r(0) = \frac{100}{U}, \quad f(0) = \frac{15}{U}$$

with U = 200 and R = 20.

Data-driven Discovery of PDEs

Problem: What are the parameters λ that best describe the observed data?

Again, PINNs approximate the solution u(x) using a neural network $\hat{u}(t,x;\theta)$, where θ represents the network parameters. The PINN is trained to fit the data and satisfy the PDE:

minimize
$$\theta, \lambda \in (\mathbb{R}^{n_{\theta}}, \mathbb{R}^{n_{\lambda}})$$
 $l(\theta, \lambda) = \frac{1}{N} \sum_{n=1}^{N} (\hat{u}_{n}(\theta) - u_{n})^{2}$ (25) subject to $\frac{\partial u(t, x)}{\partial t} + \mathcal{N}[u; \lambda] = 0, \ t = [0, T],$

Additionally, the parameters λ turn into parameters of the PINN [12].

Data-driven Discovery of PDEs

The loss function of the neural network $\hat{u}(t,x;\theta)$ consists of the two components: the error of the fit to the data, and the violation of the PDE constraint multiplied by a weighting factor μ .

$$\underset{\boldsymbol{\theta}, \boldsymbol{\lambda} \in (\mathbb{R}^{n_{\theta}}, \mathbb{R}^{n_{\lambda}})}{\text{minimize}} \quad l(\boldsymbol{\theta}, \boldsymbol{\lambda}) = \frac{1}{N} \sum_{n=1}^{N} (\hat{u}_{n}(\boldsymbol{\theta}) - u_{n})^{2} + \mu \left(\frac{\partial u}{\partial t} + \mathcal{N}[u; \lambda] \right) \tag{26}$$

The parameters λ are learnt by being optimised along the neural network parameters [12].

Data-driven Discovery of PDEs

To train the neural network $\hat{u}(t, x; \theta)$ and discover the parameters λ , data is needed:

- Collocation points, N_{PDE}: scattered points within the domain where the PDE is enforced;
- Initial/boundary points, N_v : points where the solution is known to enforce initial and boundary conditions, as well as to discover the unknown parameters λ .

Unlike the problem of "data-driven solutions", in this case some training data from the solution is needed, which can be experimental data [12].

Consider a diffusion equation with an unknown parameter *C* and Dirichlet boundary conditions [12]:

$$\frac{\partial u}{\partial t} = C \frac{\partial^2 u}{\partial x^2} - e^{-t} (\sin(\pi x) - \pi^2 \sin(\pi x)), \quad x \in [-1, 1], t \in [0, 1],$$
$$u(0, x) = \sin(\pi x),$$
$$u(t, -1) = u(t, 1) = 0.$$

First, we define the penalty term by rewriting the PDE and build the loss function [12]:

minimize
$$\theta \in \mathbb{R}^{N_{\theta}} \quad l(\theta) = \frac{1}{N_{u}} \sum_{n=1}^{N_{u}} (\hat{u}_{n}(\theta) - u_{n})^{2} + \frac{1}{N_{PDE}} \sum_{n=1}^{N_{PDE}} \left(\frac{\partial u}{\partial t} - C \frac{\partial^{2} u}{\partial x^{2}} + e^{-t} (\sin(\pi x) + \pi^{2} \sin(\pi x)) \right)$$
(27)

Then we proceed by approximating u(t,x) by a neural network [12].

Then we start by defining the geometry and time domain of the problem using the built-in classes [12, 9]:

```
geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
```

Next, we code the PDE [12, 9]:

```
def pde(x, u):
    du_t = dde.grad.jacobian(u, x, i=0, j=1)
    du_xx = dde.grad.hessian(u, x, i=0, j=0)

return (dy_t - C * dy_xx + tf.exp(-x[:, 1:])
    * (tf.sin(np.pi * x[:, 0:1]) - np.pi ** 2
    * tf.sin(np.pi * x[:, 0:1])))
```

The first argument x is a vector in which the first component is the x-coordinate and the second component is the t-coordinate. The second argument u is the output given by the neural network. C is an unknown parameter that will be initialised as 2.0 [12, 9].

```
C = dde.Variable(2.0)
```

Then we define the initial and boundary conditions using the geometry and time domains previously defined:

```
bc = dde.icbc.DirichletBC(geomtime, func,
lambda _, on_boundary: on_boundary)
ic = dde.icbc.IC(geomtime, func, lambda _,
on_initial: on_initial)
```

The reference solution is [12, 9]:

```
def func(x):
    return np.sin(np.pi * x[:, 0:1]) * np.exp(-x[:, 1:])
```

In this problem, we provide extra information on some training points so the parameter C can be identified from these observations. We generate 10 equally-spaced input points (x,t), with $x \in [-1,1]$ and t=1, using the corresponding exact solution [12].

```
observe_x = np.vstack((np.linspace(-1, 1, num=10),
np.full((10), 1))).T
observe_y = dde.icbc.PointSetBC(observe_x,
func(observe_x), component=0)
```

Now, we have specified the geometry, PDE, initial and boundary conditions, and extra observations. Thus we define the time-dependent PDE problem using the built-in function [12, 9]:

```
data = dde.data.TimePDE(geomtime, pde,
[bc, ic, observe_y],
num_domain=40, num_boundary=20, num_initial=10,
anchors=observe_x, solution=func, num_test=10000)
```

The number 40 is the number of training points sampled inside the domain, N_{PDE} . The number 20 is the number of training points sampled on the boundary, 10 are the initial points for the initial conditions, furthermore *anchors* is the additional training points N_u [12, 9].

Next we define a neural network architecture. Here, we use a fully connected neural network of depth 4 and width 32 [12, 9]:

```
net = dde.nn.FNN([2] + [32] * 3 + [1], "tanh",
"Glorot normal")
```

Then we build the network, choose an optimiser and pass the unknown parameter *C* as a trainable variable [12, 9]:

```
model = dde.Model(data, net)
model.compile("adam", lr=1e-3,
metrics=["l2 relative error"],
external_trainable_variables=C)
```

We then train the model for 50000 iterations and output *C* every 1000 iterations:

```
variable = dde.callbacks.VariableValue(C, period=1000)
losshistory, train_state = model.train(iterations=50000,
callbacks=[variable])
```

We also save and plot the best trained result and loss history [12, 9]:

```
dde.saveplot(losshistory, train_state, issave=True
, isplot=True)
```

Hands-On

- What happens if we change the number of training points inside the domain? What about in the inital and boundary conditions?
- Use PINNs to discover σ, ρ, β for the following Lorenz system:

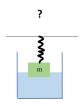
$$\frac{dx}{dt} = \sigma(y - x), \quad \frac{dy}{dt} = x(\rho - z) - y, \quad \frac{dz}{dt} = xy - \beta z, \quad t \in [0, 3]$$
$$x(0) = -8, \quad y(0) = 7, \quad z(0) = 27.$$

The true values are 10, 15, and $\frac{8}{3}$, respectively.

Neural Networks for Modelling DE

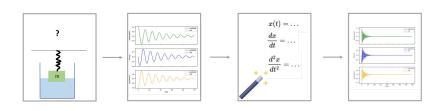
- Challenges on Differential Equations Formulation for Describing Real-world Systems
- Neural Ordinary Differential Equations
- Hands-on with the Torchdiffeq Library

Challenges on Formulating DEs



- Often the equations that model systems are unknown;
- When experimental data is available, mathematical models can be fitted;
- Traditional techniques require expert-knowledge and are a "trial and error" process.

Neural Networks for Modelling DEs



- Neural networks are universal approximators [6];
- Experimental data can be used to train a neural network to fit the data;
- However, they fit time-independent functions to data [3];
- Data has to be regularly-sampled for training [3];
- Neural Ordinary Differential Equations adjust a time-dependent function to data, an ODE [3].

In Residual Networks, we consider the following transformation of a hidden state from layer t to layer t+1:

$$\mathbf{h}_{t+1} = \mathbf{h}_t + \mathbf{f}_t(\mathbf{h}_t, \boldsymbol{\theta}_t), \tag{28}$$

where $\mathbf{h}_t \in \mathbb{R}^d$ is the hidden state at layer t, θ_t represents the parameters of the network determined by the learning process (the weights and biases), and $\mathbf{f}_t : \mathbb{R}^d \to \mathbb{R}^d$ is a differentiable function. Assuming we have a finite number of layers, for the residual forward problem presented in (28) to be stable, it is recommended to control the variation of $\mathbf{f}_t(\mathbf{h}_t, \theta_t)$ across iterations. Therefore, introducing a positive constant δ , one can control the variation of \mathbf{f}_t :

$$\mathbf{h}_{t+1} = \mathbf{h}_t + \delta \mathbf{f}_t(\mathbf{h}_t, \boldsymbol{\theta}_t). \tag{29}$$

This equation can be rewritten as:

$$\frac{\mathbf{h}_{t+1} - \mathbf{h}_t}{\delta} = \mathbf{f}_t(\mathbf{h}_t, \boldsymbol{\theta}_t), \tag{30}$$

and taking the limit $\delta \to 0$, we obtain the following ODE,

$$\frac{d\mathbf{h}(t)}{dt} = \mathbf{f}(t, \mathbf{h}(t), \boldsymbol{\theta}(t)). \tag{31}$$

defined over a certain time interval $t \in [t_0, T]$ with $T > t_0$. Note that while it is indeed true that the parameter δ provides a means to regulate the stability of the forward problem (29), the stability is not solely determined by δ but also influenced by the variations in the weights.

Eq. (31) extends the discrete nature of the Residual Network, Eq. (29), to a continuous model.

Assume we have a collection of ordered data (N+1) ordered observations) $\mathbf{x} = \{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_N\}$, which represent the state of some dynamical system at discrete instants t_i over the time interval $[t_0, T]$ (with $t_N = T$). Each $\mathbf{x}_i = (x_i^1, x_i^2, \dots, x_i^d) \in \mathbb{R}^d$, $i = 0, \dots, N$ is associated with instant t_i .

We assume that the given data can be modelled by the initial value problem in Eq. (32). This allows us to determine the behaviour of the dynamical system at any instant within the interval $[t_0, T]$ [3, 4].

$$\begin{cases} \frac{d\mathbf{x}(t)}{dt} = \mathbf{f}(t, \mathbf{x}(t)) \\ \mathbf{x}(t_0) = \mathbf{x}_0, \quad t \in [t_0, T]. \end{cases}$$
(32)

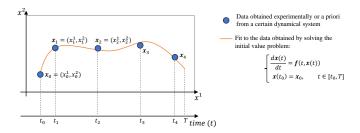


Figure 2: Fit of an ODE to data $\{x_0, x_1, x_2, x_3, x_4\}$ obtained experimentally or provided by a dynamical system. The blue symbols represent the data points, while the orange line represents the fit obtained from the initial value problem shown on the right. Each vector \mathbf{x}_i corresponds to a specific instant t_i . The initial value problem allows us to determine the behaviour of the dynamical system at any instant within the interval $[t_0, T]$ [3, 4].

The problem is that neither the solution $\mathbf{x}(t) \in \mathbb{R}^d$ nor the function $\mathbf{f}(t,\mathbf{x}(t)): \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ are known (the ODE may be linear, nonlinear, etc).

Neural ODEs provide a viable solution to approximate the initial value problem (32) using only the data $\mathbf{x} = \{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_N\}$ (the ground truth in our Neural ODE).

Let $\mathbf{h}(t)$ be an approximation of $\mathbf{x}(t)$.

$$\begin{cases} \frac{d\mathbf{h}(t)}{dt} = \mathbf{f}_{\theta}(t, \mathbf{h}(t)), \\ \mathbf{h}(t_0) = \mathbf{x}_0 \quad t \in [t_0, T]. \end{cases}$$
(33)

The right-hand side's analytical expression $(\mathbf{f}(t, \mathbf{x}(t)))$ is replaced by a NN (denoted by $\mathbf{f}_{\theta}(t, \mathbf{h}(t))$), where θ represents the weights and biases of the network [3, 4].

To illustrate the Neural ODE, we assume that the numerical method used to solve the initial value problem (33) is the explicit Euler method. A mesh is defined for each interval $[t_i, t_{i+1}]$, $i = 0, \ldots, N-1$. Therefore, given the initial condition $\mathbf{h}(t_0) = \mathbf{x}_0$, a (uniform) mesh $\{t_m^i = m\Delta t_i : m = 0, 1, ..., M_i\}$ on an interval $[t_i, t_{i+1}]$ with some integer M_i and $\Delta t := (t_{i+1} - t_i)/M_i$, we compute the numerical solution as (for the interval $[t_0, t_1]$) [3, 4],

$$\hat{m{h}}(t_1^0) = m{x}_0 + \Delta t m{f}_{m{ heta}}(t_0^0, m{x}_0) \ \hat{m{h}}(t_2^0) = \hat{m{h}}(t_1^0) + \Delta t m{f}_{m{ heta}}(t_1^0, \hat{m{h}}(t_1^0)) \ dots \ \hat{m{h}}(t_{M_0}^0) = \hat{m{h}}(t_{M-1}^0) + \Delta t m{f}_{m{ heta}}(t_{M-1}^0, \hat{m{h}}(t_{M-1}^0)) \ dots \ \end{pmatrix}$$

Neural Networks for Modelling Differential Equations

We can say that the Neural ODE consists of two main components: a numerical ODE solver, and the neural network $\mathbf{f}_{\theta}(t, \mathbf{h}(t))$ [3, 4].

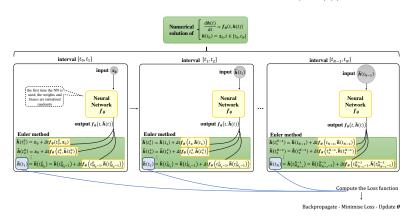


Figure 3: Schematic of a Neural ODE iteration. Note that along the sequence of figures (left to right) the NN $\mathbf{f}_{\theta}(t, \mathbf{h}(t))$ doesn't change.

We can use both adaptive and fixed-step ODE solvers. When the step size is explicitly specified Δt , the discretization takes place for each sub-interval of observations $[t_i, t_{i+1}]$ with the specified step size yielding $(t_{i+1} - t_i)/\Delta t$ time steps [3, 4].

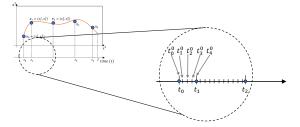


Figure 4: Example of a typical mesh used in the numerical solution of Eq. (33) for each interval $[t_i, t_{i+1}]$, i = 0, ..., N-1, where t_i is the time of observation \mathbf{x}_i [4].

Different numerical solvers can be used to obtain the numerical solution of (33), for the time being, we will refer to a numerical solver as ODESolve. Assuming $i=1,\ldots,N$ and that that t_N corresponds to T, each state $\boldsymbol{h}(t_i)$ is then numerically given by [3, 4],

$$\hat{\boldsymbol{h}}(t_i) = \mathsf{ODESolve}(\boldsymbol{f_\theta}, \boldsymbol{x}_0, \{t_1, \dots, t_N\}). \tag{34}$$

Consider you have experimental data from a population growth. Here, we will use the synthetic data fabricated earlier. We want to model the dynamics using a Neural ODE [3, 4]. First, the torchdiffeg and torch modules are imported [4, 2]:

```
import torch
import torch.nn as nn
import torch.optim as optim
from torchdiffeq import odeint
```

With this Neural ODE we will be able to predict the population *P* at each time instant given the initial condition:

```
true_y0 = torch.tensor([2.518629])
```

Next, we define a neural network to approximate the right-hand side of the ODE [4, 2]:

```
class ODEFunc(nn.Module):
   def __init__(self):
        super(ODEFunc, self). init ()
        self.net = nn.Sequential(nn.Linear(1, 50),
            nn.Tanh(), nn.Linear(50,50),
            nn.ELU(), nn.Linear(50, 1))
        for m in self.net.modules():
            if isinstance(m, nn.Linear):
               nn.init.normal_(m.weight, mean=0, std=0.1)
               nn.init.constant_(m.bias, val=0)
    def forward(self, t, y):
        return self.net(y)
```

Then we compile the network and choose an optimiser:

```
func = ODEFunc()
optimizer = optim.Adam(func.parameters(), lr=1e-5)
```

We define the time instants in which we want to know the solutions [4, 2]:

```
t = torch.linspace(0., 1, 500)
```

Now, we have specified the network, optimiser and we have training data available. Then we define the training loop:

```
for itr in range(1, 2000):
    pred_y = odeint(func, true_y0, t, method='rk4')
    loss = nn.MSELoss()(pred_y, true_y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    for itr % 100 == 0:
        print('Iter {:04d}|Loss {:.6f}'.format(itr, loss))
```

Here we specify the numerical method to be a fixed-step one and print the loss value every 100 iterations [4, 2].

Hands-On

- What happens if we change the numerical method from a fixed-step solver to an adaptive-solver?
- Choose a known differential equation that is used to model a real system. Solve it to create a synthetic dataset. Try using a Neural ODE to model the data.

Wrap-up

- Physics-Informed Neural Networks versus Neural Ordinary Differential Equations
- What's Next?

Wrap-up 86/107

PINNs vs Numerical Methods

PINNs

- Mesh-independent;
- Suitable for problems in irregular or complex domains;
- Generalise to unseen data;
- Computes at arbitrary times directly;
- Data-hungry;
- Sensitive to hyperparameter choices and NN architectures;
- Computationally expensive to train;
- Lack transparency and interpretability.

Numerical Methods

- Some methods rely on structured grids;
 - Computationally expensive in high dimensions;
- Iterative method;
- Work with limited data;
- Established guidelines;
- Computationally efficient for some problems;
- Well-understood algorithms.

Neural ODEs vs Traditional NNs

Neural ODEs

- Can handle irregularly-sampled data;
- Allows predictions at any point in time and discretisation;
- Computationally intensive due to solving differential equations at each training iteration;
- May be unstable due to the numerical solver inside.

Traditional NNs

- Only handles regularly-sampled data;
- Makes predictions based on discrete time steps;
- More straightforward training process.

What's Next?

What's Next?

- Learning families of solutions with Neural Operators [7]
- Learning in Fourier [8] or Laplace space [5, 1, 16]
- Neural ODEs combined with ODE-RNN, Latent ODE [3, 13]
- Learning other classes, e.g. integro-differential [14] and fractional equations [4, 15]

What's Next? 90/107

From PINNS to Neural Operators

A PINN is used to get **one** solution of a problem. What if you change the parameters (e.g. diameter *D*)?

PINNs need to compute a new solution for that. So how can we learn a mor general model?

What's Next? 91/10'

Impulse Response

The impulse response can be thought as the reaction of a system for a very short and strong impulse (e.g. a drop on water)

We use PDE to describe the wave. For a fixed point (e.g. if we measure level sensor) we use an ODE.

What's Next? 92/107

Solutions via impulse response

Drive a first-order ODE with input f(t):

$$u'(t) + a u(t) = f(t),$$
 $u(0) = 0, a > 0.$

Its **impulse response** (response to a unit-area impulse at t=0) is

$$h(t) = e^{-at} \mathbf{1}_{t>0}.$$

Then the whole output is the **convolution** of input with *h*:

$$u(t) = (h * f)(t) = \int_0^t \underbrace{e^{-a(t-s)}}_{\text{kernel / impulse response}} f(s) ds.$$

Read: the kernel $e^{-a(t-s)}$ says how strongly a past input at time s influences u at time t.

Impulse = Dirac $\delta(t)$: "infinite peak, unit area".

What's Next? 93/107

From impulse response to an operator view

The convolution can be seen as an **integral operator** parameterized by *a*:

$$(G_a f)(t) = \int_0^t h(t, s; a) f(s) ds, \qquad h(t, s; a) = e^{-a(t-s)} \mathbf{1}_{s \le t}.$$

General operator view (ODE/PDE).

$$u(x) = (G_c f)(x) = \int_{\Omega} \kappa(x, y; c) f(y) dy + \phi(x; c).$$

c represents physical parameters, boundary conditions, or geometry. For homogeneous BCs, ϕ \equiv 0. In time-dependent problems, x may include time, and the kernel may integrate over space and/or time.

What's Next? 94/107

Neural Operator layer

Learn the Neural Operator [7] by learning its kernel:

$$(\mathcal{K}_{\theta}f)(x) = \sigma \Big(\underbrace{Wf(x)}_{\text{local (pointwise)}} + \underbrace{\int \kappa_{\theta}(x,y) \, f(y) \, dy}_{\text{nonlocal (global mixing)}} + b(x) \Big).$$

Intuition: κ_{θ} is a learned impulse response. If the mapping is (near-)linear, set $\sigma = \operatorname{Id}$ and optionally W=0.

What can f encode?

- **Coefficients / material:** a(x) (conductivity, permeability)
- Forcing / load: f(x, t) (PDE) or f(t) (ODE)
- **Boundary / initial data:** g on $\partial\Omega$, u_0 in Ω
- ...

Neural Operator network (stacked)

Start with $z_0 = f$. For layers $\ell = 0, \dots, L-1$:

$$z_{\ell+1}(x) = \sigma \Big(W_{\ell} z_{\ell}(x) + \int \kappa_{\theta,\ell}(x,y) z_{\ell}(y) dy + b_{\ell}(x) \Big).$$

Output: $\hat{u} = z_L$ (or an extra linear readout).

Linear case: $\sigma = \mathrm{Id}$, W_{ℓ} optional.

What's Next? 96/107

Why Neural Operators (vs. PINNs)?

- **Train once, reuse:** fast predictions for many new inputs (no re-optimisation).
- Resolution/mesh agnostic: train on one grid, evaluate on another. On structured grids (spectral variants) this is typical; for arbitrary meshes/geometries use graph/mesh operator designs and encode geometry.
- Learn a family: generalise across coefficients/BCs/forcings seen in training.

Caveat: needs paired data (f, u); out-of-distribution generalisation is not guaranteed.

What's Next? 97/107

One operator, many approximations

$$u(z) = \int \kappa(z,z') f(z') dz',$$

where z can be x (space), t (time), or (x, t) (spacetime). Different neural operators approximate this integral in different domains.

While the landscape of Neural Operators is wide, the next slides introduce two interesting examples.

What's Next? 98/10

Fourier Neural Operator (FNO)[8]

Idea. A spatial FFT turns convolution into pointwise multiplication in k-space; time stays as channels.

Operator view (per t).

$$\widehat{u}(k,t) = R_{\theta}(k,t)\widehat{f}(k,t)$$
 with $\widehat{f} = \mathcal{F}_{x}(f)$

•

FNO are normally stacked in layers:

$$v_{l+1}(x,t) = \sigma(W_l v_l(x,t) + \mathcal{F}_x^{-1}(R_{\theta,l} \mathcal{F}_x[v_l])).$$

Fast: convolution to multiplication; few low/mid modes suffice. **Valid when:** roughly shift-invariant spatial kernel on a uniform grid; boundaries via padding/periodisation.

What's Next?

Laplace Neural Operator (LNO)[1]

Idea. A temporal Laplace transform turns causal time–convolution into pointwise multiplication in s–space; space stays as channels. **Operator view (per** x**).**

$$\mathcal{L}_t[u](x,s) = H_\theta(x,s) \mathcal{L}_t[f](x,s)$$
 with $u = f * h_t$

•

LNO a also stacked in layers:

$$v_{l+1}(x,t) = \sigma(W_l v_l(x,t) + \mathcal{L}_t^{-1}(H_{\theta,l} \mathcal{L}_t[v_l])).$$

Why fast: convolution to multiplication.

Valid when: roughly time–shift–invariant causal kernel on a uniform time grid. **Relation to FNO:** same spectral trick, but along time; can be paired with spatial FFT.

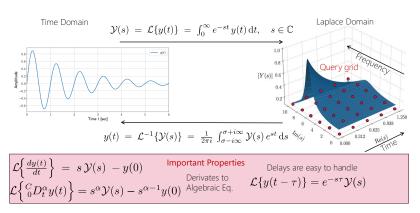
What's Next?

100/107

Staying in the Laplace Domain: from fields to sensor signals

Neural Laplace

Neural Laplace [5] skips explicit ODE time-stepping by learning in the Laplace domain and performing \mathcal{L}^{-1} numerically.



Key idea: The Laplace transform turns derivatives into (complex) algebra and convolutions into multiplication.

What's Next? 102/107

Laplace Net

Laplace Net [16] is a solver free sequence to sequence model. It learns an input x(t) output y(t) mapping based on an historical sequence. It is a modular architecture that can also model delays and memory.

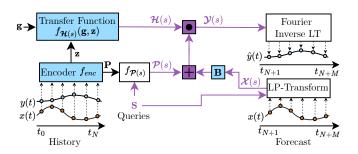


Figure 5: Architecture of Laplace-net. Blue marks learnable parts. Complex values are purple.

What's Next? 103/107

Thank You!

Thank you for your time and patience!

Acknowledgements

This work was funded by Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technology) through CMAT projects UIDB/00013/2020 and the support of the High-Performance Computing Center at the University of Évora funded by FCT I.P. under the project "OptXAI: Constrained optimisation in NNs for Explainable, Ethical and Greener AI", reference 2024.00191.CPCA.A1, platform Vision, and national funds through the FCT/MCTES (PIDDAC) under the project 2022.06672.PTDC—iMAD (Improving the Modelling of Anomalous Diffusion and Viscoelasticity: solutions to industrial problems), DOI 10.54499/2022.06672.PTDC (https://doi.org/10.54499/2022.06672.PTDC); and

by the projects LA/P/0045/2020 (ALICE), UIDB/00532/2020, and UIDP/00532/2020 (CEFT). It was also financially supported by Fundação "la Caixa" BPI and FCT through project PL24-00057: "Inteligência Artificial na Otimização da Rega para Olivais Resilientes às Alterações Climáticas". C. Coelho would also like to thank the KIBIDZ project funded by dtec.bw—Digitalization and Technology Research Center of the Bundeswehr; dtec.bw is funded by the European Union—NextGenerationEU. B. Zimmering would also like to thank the LaiLa project funded by dtec.bw—Digitalization and Technology Research Center of the Bundeswehr:

References I

[1]	Qianying Cao, Somdatta Goswami, and George Em Karniadakis. "Laplace Neural Operator for Solving
	Differential Equations". In: Nature Machine Intelligence 6.6 (June 2024), pp. 631–640. ISSN: 2522-5839. DOI:
	10.1038/s42256-024-00844-4.URL:
	https://www.nature.com/articles/s42256-024-00844-4 (visited on 12/25/2024).

- [2] Ricky T. Q. Chen. torchdiffeq. 2018. URL: https://github.com/rtqichen/torchdiffeq.
- [3] Ricky TQ Chen et al. "Neural ordinary differential equations". In: Advances in neural information processing systems 31 (2018).
- [4] C. Coelho, M. Fernanda P. Costa, and L.L. Ferrás. "Neural fractional differential equations". In: Applied Mathematical Modelling 144 (2025), p. 116060. DOI: 10.1016/j.apm.2025.116060.
- [5] Samuel I. Holt, Zhaozhi Qian, and Mihaela van der Schaar. "Neural Laplace: Learning Diverse Classes of Differential Equations in the Laplace Domain". In: Proceedings of the 39th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri et al. Proceedings of Machine Learning Research. PMLR, Dec. 2021, p. 88118832. URL: https://proceedings.mlr.press/v162/holt22a.html.
- [6] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators". In: Neural networks 2.5 (1989), pp. 359–366.
- [7] Nikola Kovachki et al. "Neural operator: Learning maps between function spaces with applications to pdes". In: Journal of Machine Learning Research 24.89 (2023), pp. 1–97.
- Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020. DOI: 10.48550/ARXIV.2010.08895. URL: https://arxiv.org/abs/2010.08895 (visited on 10/23/2025).
- Lu Lu et al. "DeepXDE: A deep learning library for solving differential equations". In: SIAM review 63.1 (2021), pp. 208–228.
- [10] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.
- [11] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: Journal of Computational physics 378 (2019), pp. 686–707.

References II

- [12] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. "Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations". In: arXiv preprint arXiv:1711.10561 (2017).
- [13] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. "Latent ordinary differential equations for irregularly-sampled time series". In: Advances in neural information processing systems 32 (2019).
- [14] Emanuele Zappala et al. "Neural integro-differential equations". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. 9. 2023, pp. 11104–11112.
- [15] Bernd Zimmering, Cecília Coelho, and Oliver Niggemann. "Optimising Neural Fractional Differential Equations for Performance and Efficiency". In: Proceedings of the 1st ECAI Workshop on "Machine Learning Meets Differential Equations: From Theory to Applications". Ed. by Cecília Coelho et al. Vol. 255. Proceedings of Machine Learning Research. PMLR, Oct. 2024, pp. 1–22. uRL: https://proceedings.mlr.press/v255/zimmering24a.html.
- [16] Bernd Zimmering et al. "Breaking Free: Decoupling Forced Systems with Laplace Neural Networks". In: Machine Learning and Knowledge Discovery in Databases. Research Track. Ed. by Rita P. Ribeiro et al. Cham: Springer Nature Switzerland, 2026, pp. 252–269. ISBN: 978-3-032-06109-6.