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Introduction to Differential Equations
What are Differential Equations
Solving Differential Equations
Differential Equations in Real life

Neural Networks for Solving Differential Equations
Challenges of Numerical Methods
Physics‑Informed Neural Networks
Hands‑on with the DeepXDE Library

Neural Networks for Modelling Differential Equations
Challenges on Differential Equations Formulation for Describing Real‑world
Systems
Neural Ordinary Differential Equations
Hands‑on with the Torchdiffeq Library

Wrap‑up
Physics‑Informed Neural Networks versus Neural Ordinary Differential
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What’s Next? (Neural Operators, Neural Laplace, etc.)
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All material can be found at the official tutorial’s website, including
a jupyter notebook with the coding examples and hands‑on that
will be used.

https://nnde‑ecai.github.io/

https://nnde-ecai.github.io/
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Let’s look at a simple, classic example of building a mathematical
model to describe the evolution over time of a certain population
(human, animal species, bacterial, etc.).
Suppose that the number of individuals in a certain population at a
given time t is given by

P(t), (1)

that is, P(t) represents a function of time (the population as a
function of time). To develop the model, let’s fix a certain time
interval

[t, t+∆t]. (2)

For example, if t = 1hour and∆t = 4 hours, the interval would be
[1; 5]. We will try to find a relationship between the population at
time t (P(t)) and the population at time t+∆t (P(t+∆t)).
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What happens during this time interval is that there was a certain
number of deaths (M) and a certain number of births (N).
Our common sense suggests that:

The larger the population, the higher the number of deaths and births (e.g.,
if in a population of 1000 individuals we have 10 deaths, then in a population
of 2000 individuals we would expect 20 deaths). In other words, the number
of deaths (M) and births (N) is proportional to the number of individuals
(P(t)):

N = αP(t), M = βP(t) (3)
where α and β (∈ R+) are the proportionality constants, which may vary
from population to population.
It is also expected that N andM depend on the time interval∆t. That is, the
longer the time interval, the greater the number of births and deaths.
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This double dependency of N andM on P(t) and∆t can then be
expressed as:

N = αP(t)∆t, M = βP(t)∆t. (4)

Consequently, the change in population over the time interval
[t, t+∆t] is given by P(t+∆t)− P(t) = N− M, that is:

P(t+∆t)− P(t) = (α− β)P(t)∆t. (5)

Dividing both sides by∆t, we obtain the following equation:

P(t+∆t)− P(t)
∆t = (α− β)P(t). (6)
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P(t+∆𝑡)

P(t)

Slope= 𝑃 𝑡+∆𝑡 −𝑃(𝑡)

∆𝑡

Slope= 𝑑𝑃 𝑡 )

𝑑𝑡

t t+∆𝑡

Taking the limit as∆t → 0, we obtain the following differential
equation:

dP
dt = (α− β)P(t), (7)

which is the well‑known Malthusian equation, describing the
expected variation (model) of population growth (α > β) or decline
(α < β). Often, the notation P′(t) is used instead of dP

dt .
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Let k = α− β, then cekt with c ∈ R an arbitrary constant, is the
solution of our problem:

dP
dt = kP(t), (8)

If we denote by P0 the number of individuals at the beginning of the
study (t0 = 0), P(0) = P0 , then the solution to themodel is given by
(the arbitrary constant become a specific value: P0):

P(t) = P0ekt (9)

0P

( )P t

0k 

t

0P

( )P t

0k =

t

0P

( )P t

0k 

t
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The differential equation dP
dt = kP(t) together with the initial

condition P(0) = P0 is known as an Initial Value Problem.

This differential equation, which represents the Malthusian model,
can also be written in the form:

dy(x)
dx = ky(x) or y′ = ky

where the typical notation of x and y is used. From now on, we will
preferably use this notation, where y is a function of x, with x being
the independent variable.
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A differential equation is an equality that involves a function of one
or more variables and its derivatives up to a certain order.

Example

x2d
2y

dx2 − xy
(
dy
dx

)4

= 0 or x2y′′ − xy(y′)4 = 0 (10)

y′ = y (11)
y′′ + 2yy′ = 3x (12)

d3v
dt3 + 5vdvdt = cos t or v′′′ + 5vv′ = cos t (13)

∂2u
∂x2 +

∂2u
∂y2 + 2

∂2u
∂z2 = 0 (14)
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Definition (Ordinary Differential Equation (ODE))
A differential equation involving derivatives of one or more
dependent variables with respect to an independent variable is
called an ordinary differential equation (ODE).

Definition (Partial Differential Equation (PDE))
is a differential equation that involves partial derivatives of a
multivariable function. A PDE involves one or more dependent
variables and their partial derivatives with respect to two or more
independent variables.
Example: For a function u(x, y), a PDEmight look like:

∂2u
∂x2 +

∂2u
∂y2 = 0

This is known as the Laplace equation, which appears in heat
conduction, fluid flow, and electrostatics.
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The theory of differential equations began in the late 17th century,
influenced by the works of G.W. Leibniz, I. Barrow, I. Newton, and the
Bernoulli brothers, who solved simple first and second‑order equations in
mechanics and geometry. A notable milestone occurred on November 11,
1675, when Leibniz solved the equation dy

dx = x, using the integral symbol
(
∫
).

The Malthus model is a simple ODE known as a separable variable differential
equation. Its solution can be easily derived, as described in the following
equations.
Assuming that P ̸= 0, we start with:

dP
dt

= kP ⇔
1

P
dP = k dt, (15)

Next, we apply the integral to both sides of the equation:∫
1

P
dP =

∫
k dt ⇒ ln |P| = kt+ c1 ⇒ P(t) = c2ekt, (16)

where c1 and c2 are constants, with c2 ∈ R+
0 .
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Newton’s equation of motion was pivotal in developing calculus,
categorizing first‑order equations into forms such as dy

dx = f(x, y). Leibniz
introduced the notation for derivatives and integral, and he developed the
theory of separable differential equations and discoveredmethods for
solving linear first‑order equations.
The 18th century saw significant advancements in the theory of differential
equations, with contributions from Jacob and Johann Bernoulli, as well as
prominent mathematicians like Clairaut, D’Alembert, and Euler. Euler
established conditions for exact first‑order equations and developed the
theory of integrating factors.
In the 19th century, Dirichlet proved the convergence of Fourier series, and
Cauchy rigorously defined convergence concepts. Liouville established the
limitations of solving differential equations using elementary functions,
while the works of Picard and Peano addressed the existence and
uniqueness of solutions for initial value problems.
The second half of the 20th century witnessed advancements in
computational methods for solving differential equations, thanks to the
contributions of Carl Runge and Martin Kutta.
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Engineering
Applied 

Mathematics

Pure 

Mathematics

Engineers apply scientific 
and mathematical principles 
to design, build and analyze 
systems. Their work is 
mostly practical and 
oriented towards solving 
real-world problems.

Applied mathematicians use 
mathematical techniques and 
theories to solve practical 
problems in various fields. They 
focus on modeling real-world 
phenomena and finding 
numerical solutions.

Pure mathematicians study 
mathematical concepts for their 
intrinsic value, without 
necessarily considering 
practical applications. They are 
more concerned with exploring 
theoretical aspects of 
mathematics.

The three fields are all essential because they approach problems
differently.

Pure mathematicians focus on determining whether a mathematical
solution exists and under what conditions it can be applied.
In contrast, engineers assume that a solution exists and immediately begin
working on finding an exact or approximate solution to the problem.
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For example, mathematicians are concerned with the following
type of results for differential equations:

Theorem (Existence and Uniqueness of Solution)
Consider the differential equation

dy
dx = f(x, y)

where
1. The function f is continuous in a domain D of the xy‑plane;
2. The partial derivative ∂f

∂y is also continuous in D.

Let (x0, y0) be a point in D. Then the differential equation has a
unique solution ϕ in the interval ]x0 − h, x0 + h[ (or |x− x0| < h), for
sufficiently small h, which satisfies the condition

ϕ (x0) = y0.
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We previously discussed how to find the analytical solution to the
equation

dP
dt = kP(t)

with the initial condition P(0) = P0.

However, not all differential equations are this straightforward. In
many cases, wemust rely on numerical solutions to solve more
complex equations!
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Physical phenomenon

Physical phenomena described by a 
mathematical model (differential 
equation).

Numerical Solution

Monday Tuesday Wednesday

Prediction of the evolution of physical 
phenomena by numerical solution of 
the differential equations.

SOLVERScientists

t

u

+   (uu) = −p +  τ

Mathematical Model



Solving Differential Equations

Cecília Coelho, Luís Ferrás and Bernd Zimmering
Introduction to Differential Equations 18/107

Numerical Models

Please note that while we can obtain weather forecasts for every
hour, we cannot provide a forecast for a specific time, such as 10:36.

https://www.aemet.es/en/eltiempo/prediccion/modelosnumericos/harmonie_arome
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Consider the simple differential equation,

dP
dt = kP(t)

with the initial condition P(0) = P0. We will now obtain its
numerical solution!
For that we need to define the kind of approximation we will use,
that is, the numerical method:

Finite Difference (FD)
Finite Volume (FV)
Finite Elements (FE)
other methods ...
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Define an interval: [0, 2]
Create amesh: wewill consider 5mesh elements (4 intervals of 0.5)∆t = 0.5

0                0.5            1                  1.5              2               t

𝑃0 𝑃1 𝑃2 𝑃3 𝑃4

Initial condition: P(0) = P0 = 2

Let: k = 1

Objective: determine the discrete solution P1, P2, P3, P4
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Obtain approximations for dPdt at t1 = 0.5, t2 = 1, t3 = 1.5, t4 = 2

P(t+∆𝑡)

P(t)

Slope= 𝑃 𝑡+∆𝑡 −𝑃(𝑡)

∆𝑡

Slope= 𝑑𝑃 𝑡 )

𝑑𝑡

t t+∆𝑡

dP(ti)
dt ≈ Pi − Pi−1

∆t , i = 1, .., 4

Solve the system of equations (Explicit Euler Method):

P1 − Po
∆t = P0 ⇔ P1 = P0 +∆tP0

P2 = P1 +∆tP1

P3 = P2 +∆tP2

P4 = P3 +∆tP3



Solving Differential Equations ‑ FD

Cecília Coelho, Luís Ferrás and Bernd Zimmering
Introduction to Differential Equations 22/107

Let dS(t)
dt = F(t, S(t)) be an explicitly defined first order ODE. That is,

F is a function that returns the derivative, or change, of a state given
a time and state value. Also, let ti be a numerical grid point of the
interval [t0, tf]with spacing∆t. Without loss of generality, we
assume that t0 = 0, and that tf = N∆t for some positive integer, N.
We then approximate the solution at S(tj+1) by:

S(tj+1) = S(tj) + (tj+1−tj)
dS(tj)
dt

which can also be written as

S(tj+1) = S(tj) + ∆t F(tj, S(tj))



Solving Differential Equations ‑ FD

Cecília Coelho, Luís Ferrás and Bernd Zimmering
Introduction to Differential Equations 23/107

Δ𝑡
https://pythonnumericalmethods.studentorg.berkeley.edu
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Implicit Euler Method:

S(tj+1) = S(tj) + ∆t F(tj+1, S(tj+1))

for our previous example, we obtain the following system of equations:

P1 − P0

∆t = kP1

P2 − P1

∆t = kP2

P3 − P2

∆t = kP3

P4 − P3

∆t = kP4
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The system can be rewritten as:

(1− k∆t)P1 = P0,

−P1 + (1− k∆t)P2 = 0,

−P2 + (1− k∆t)P3 = 0,

−P3 + (1− k∆t)P4 = 0.

In matrix form, for the unknowns P = [P1, P2, P3, P4]
T, this becomes:

1− k∆t 0 0 0
−1 1− k∆t 0 0
0 −1 1− k∆t 0
0 0 −1 1− k∆t



P1

P2

P3

P4

 =


P0

0
0
0

 .
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Its now time for you to do it by yourselves (Part I)!

The differential equation df(t)
dt = e−t with initial condition f(0) = −1

has the exact solution f(t) = −e−t. Approximate the solution to this
initial value problem between 0 and 1 in increments of 0.1 using the
Explicit Euler method. Plot the difference between the
approximated solution and the exact solution.

Play with the solver,model parameters and the number of mesh
elements.
https://github.com/NNsDEsTutorial/NNsDEsTutorial.github.io

https://github.com/NNsDEsTutorial/NNsDEsTutorial.github.io
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Its now time for you to do it by yourselves (Part I)!

import numpy as np
import matplotlib.pyplot as plt

# Define parameters
f = lambda t, s: np.exp(-t) # ODE
h = 0.3 # Step size
t = np.arange(0, 1 + h, h) # Numerical grid
s0 = -1 # Initial Condition

# Explicit Euler Method
s = np.zeros(len(t))
s[0] = s0

for i in range(0, len(t) - 1):
s[i + 1] = s[i] + h*f(t[i], s[i])
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Cont.

plt.figure(figsize = (6, 5))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()
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Its now time for you to do it by yourselves (Part II)! You do not need
to implement the numerical solver, Python can easily deal with that:

sol = solve_ivp(ODE, [0, 5], y0, t_eval=t)

Consider a population of organisms that follows a logistic growth.
The population size P(t) at time t is governed by the following
differential equation:

P′(t) = rP(t)
(
1− P(t)

K

)
, P(t0) = 100, (17)

where r is the growth rate, and K is the carrying capacity of the
environment. Consider r = 0.1, K = 1000. Also, consider a mesh of
200 points.
Play with the solver,model parameters and the number of mesh
elements.
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Most interesting real life applications are modelled by the Partial
Differential Equations

molecular continuum



Differential Equations in Real Life

Cecília Coelho, Luís Ferrás and Bernd Zimmering
Introduction to Differential Equations 31/107

Most interesting real life applications are modelled by the Partial
Differential Equations

They are used by engineers and physicists all 

over the world in many fields, which go from 

aircraft design to blood circulation. They are 

also very complicated to solve and that is why 

they are one of the seven Millennium Prize 

Problem. Solving one of these problems will 

win you a million dollars

Navier-Stokes Equations
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Diffusion can be seen as a transport phenomena where
distribution, mixing or transport of mass/particles occurs without
requiring bulk motion (the spreading of something more widely).

Time (t)0 1 6

…

Water

Ink

∂u(t, x)
∂t = D∂

2u(t, x)
∂x2 (1D) (18)

∂u(t, x, y)
∂t = D

(
∂2u(t, x, y)

∂x2 +
∂2u(t, x, y)

∂y2

)
(2D) (19)
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Challenges of Numerical Methods
Physics‑Informed Neural Networks
Hands‑on with the DeepXDE Library
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Time (t)0 1 6

…

Boundary condition

Boundary condition

Initial condition

Boundary condition

Boundary condition

Boundary condition

Boundary condition

Explicit

Implicit

𝑢𝑖𝑗 𝑢𝑖+1𝑗

Solve a system of equations for each time step
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There are several numerical methods and different solvers for
solving differential equations, but nearly all of them share one
major drawback — they are time andmemory‑consuming!
Simulations can sometimes take months to complete.

N. Gonçalves, P. Teixeira, L.L. Ferrás, A. Afonso, Innovative approach to 

the design of profile extrusion dies, Society of Plastic Engineers – Plastic 

Research Online (2014) 10.2417/spepro.005733.
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Solving differential
equations

Complete knowledge of the
system;
Exact solutions can be found
but not often;
Numerical solutions involve
numerical methods;
Used for finding the exact
solutions for ODEs and PDEs
in physics and engineering,
where the system’s behavior
is well‑defined
mathematically.

Modelling differential
equations

Fully or partially unknown
governing equations;
Requires observed data to
adjust the parameters or
functions to match the data;
Involves traditional
optimization methods;
Used for modeling systems in
epidemiology, ecology,
finance, and others.
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Real systems in physics, chemistry and engineering are typically described
by differential equations;
When differential equations are known, numerically solving them can be
computationally prohibitive [11];
Physics‑Informed Neural Networks (PINNs) use a neural network to
approximate the curve of solutions [11];
PINNs offer a faster andmore cost‑effective alternative to numerical
methods when doing predictions [11].
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Raissi, M., Perdikaris, P., Ahmadi, N., & Karniadakis, G. E. (2024). Physics-informed neural networks and extensions. arXiv preprint arXiv:2408.16806.

Cai, S., Wang, Z., Fuest, F., Jeon, Y. J., Gray, C., & Karniadakis, G. E. (2021). Flow over an espresso cup: inferring 3-D velocity and pressure fields from 

tomographic background oriented Schlieren via physics-informed neural networks. Journal of Fluid Mechanics, 915, A102.
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Consider a parameterised and nonlinear partial differential
equation (PDE) of the general form:

∂u(t, x)
∂t +N [u;λ] = 0, x ∈ Ω, t ∈ [0, T], (20)

where u(t, x) is the solution,N [u;λ] is a differential operator andΩ
the domain of x. This setup encapsulates a wide range of problems
in mathematical physics including conservation laws, diffusion
processes, advection–diffusion–reaction systems, and kinetic
equations.
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As a motivating example, take the 1D Burger’s equation,
corresponding toN [u;λ] = λ1udu

dx − λ2
∂2u
∂x2 :

∂u
∂t + λ1u

∂u
∂x − λ2

∂2u
∂x2 = 0, x ∈ Ω, t ∈ [0, T]. (21)

This equation arises in various areas of applied mathematics,
including fluid mechanics, nonlinear acoustics, gas dynamics, and
traffic flow. For small values of the viscosity parameters λ1, λ2, it is
hard to solve by numerical methods.
Given noisy measurements of the system, we are interested in the
solution of two distinct problems: data‑driven solutions of PDEs,
and data‑driven discovery of PDEs [11].
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Problem: Given fixed model parameters λ, what can be said about
the unknown u(t, x)?
PINNs approximate the solution u(t, x) using a neural network
û(t, x;θ), where θ represents the network parameters. The PINN is
trained to fit the data (un) and satisfy the PDE, given by Eq. (20) [11].
This can be formulated as a constrained optimisation problem:

minimize
θ ∈ Rnθ

l(θ) = 1

N

N∑
n=1

(ûn(θ)− un)2

subject to
∂u(t, x)

∂t +N [u;λ] = 0, t = [0, T],

(22)
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To do this, we can rewrite the constrained problem (22) into an
unconstrained problem by using a penalty method [10]:

minimize
θ ∈ Rnθ

l(θ) = 1

N

N∑
n=1

(ûn(θ)− un)2 + µ

(
∂u(t, x)

∂t +N [u;λ]
)

(23)
Then, the loss function of the neural network û(t, x;θ) consists of
two components: the error of the fit to the data, and the violation of
the PDE constraint multiplied by a weighting factor µ [11].
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To train the neural network û(x;θ), data is needed. Collocation
points are crucial in training PINNs and these are taken from
locations to enforce the PDE’s loss term. Likewise, initial and
boundary training data are used to fit the data:

Collocation points, NPDE: scattered points within the domain where the PDE
is enforced;
Initial/boundary points, Nu: points where the solution is known to enforce
initial and boundary conditions [11].
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Consider the 1D Burger’s Equation with Dirichlet boundary
conditions and λ1 = 1, λ2 =

0.01
π [11]:

∂u
∂t + u∂u

∂x − 0.01

π

∂2u
∂x2 = 0, x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = − sin(πx),
u(t,−1) = u(t, 1) = 0.
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First, we define the penalty term as ∂u
∂t + u∂u

∂x −
0.01
π

∂2u
∂x2 and build

the loss function:

minimize
θ ∈ Rnθ

l(θ) = 1

Nu

Nu∑
n=1

(ûn(θ)− un)2+

1

NPDE

NPDE∑
n=1

(
∂u
∂t + u∂u

∂x − 0.01

π

∂2u
∂x2

) (24)

Then we proceed by approximating u(t, x) by a neural network [11].
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To compute the derivatives of u(t, x), PINNs use backpropagation
[11].

Figure 1: Schematic of the methodology used in the PINNmethod.
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First, the DeepXDE and TensorFlowmodules are imported:

import deepxde as dde
from deepxde.backend import tf

Then we start by defining the geometry and time domain of the
problem using the built‑in classes [11, 9]:

geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)



Example ‑ 1D Burger’s Equation

Cecília Coelho, Luís Ferrás and Bernd Zimmering
Neural Networks for Solving Differential Equations 49/107

Next, we code the PDE:

def pde(x, u):
du_x = dde.grad.jacobian(u, x, i=0, j=0)
du_t = dde.grad.jacobian(u, x, i=0, j=1)
du_xx = dde.grad.hessian(u, x, i=0, j=0)

return du_t + u * du_x - 0.01 / np.pi * du_xx

The first argument x is a vector in which the first component is the
x‑coordinate and the second component is the t‑coordinate. The
second argument u is the output given by the neural network [11, 9].
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Then we define the initial and boundary conditions using the
geometry and time domains previously defined:

bc = dde.icbc.DirichletBC(geomtime, lambda x: 0,
lambda _, on_boundary: on_boundary)
ic = dde.icbc.IC(geomtime, lambda x: -np.sin(np.pi *
x[:, 0:1]), lambda _, on_initial: on_initial)

The first argument x is a vector in which the first component is the
x‑coordinate and the second component is the t‑coordinate. The
second argument u is the output given by the neural network [11, 9].
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Now, we have specified the geometry, PDE, and initial and
boundary conditions. Thus we define the time‑dependent PDE
problem using the built‑in function:

data = dde.data.TimePDE(geomtime, pde, [bc, ic],
num_domain=2540, num_boundary=80, num_initial=160)

The number 2540 is the number of training points sampled inside
the domain, NPDE. The number 80 is the number of training points
sampled on the boundary and 160 are the initial points for the
initial conditions, Nu [11, 9].
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Next we define a neural network architecture. Here, we use a fully
connected neural network of depth 4 and width 20:

net = dde.nn.FNN([2] + [20] * 3 + [1], "tanh",
"Glorot normal")

Then we build the network and choose an optimiser [11, 9]:

model = dde.Model(data, net)
model.compile("adam", lr=1e-3)
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We then train the model for 15000 iterations:

losshistory, train_state = model.train(iterations=15000)

After we train the network using Adam, we continue to train the
network using L‑BFGS to achieve a smaller loss [11, 9]:

model.compile("L-BFGS-B")
losshistory, train_state = model.train()
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Having some test data taken from a reference solution of the 1D
Burger’s Equation, we can compute the testing metrics [11, 9]:

def gen_testdata():
data = np.load("Burgers.npz")
t, x, exact = data["t"], data["x"], data["usol"].T
xx, tt = np.meshgrid(x, t)
X = np.vstack((np.ravel(xx), np.ravel(tt))).T
y = exact.flatten()[:, None]
return X, y

X, y_true = gen_testdata()
y_pred = model.predict(X)
f = model.predict(X, operator=pde)
print("Mean residual:", np.mean(np.absolute(f)))
print("L2 relative error:",
dde.metrics.l2_relative_error(y_true, y_pred))
np.savetxt("test.dat", np.hstack((X, y_true, y_pred)))
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What happens if we change the number of training points inside the
domain? What about in the inital and boundary conditions?
Use PINNs to approximate the solution of the following Lotka‑Volterra
problem to know how the population of rabbits and foxes change over time
in a system:

dr
dt =

R
U (2Ur− 0.04U2rf), df

dt =
R
U (0.002U2rf− 1.06Uf),

r(0) = 100

U , f(0) = 15

U
with U = 200 and R = 20.
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Problem: What are the parameters λ that best describe the
observed data?
Again, PINNs approximate the solution u(x) using a neural network
û(t, x;θ), where θ represents the network parameters. The PINN is
trained to fit the data and satisfy the PDE:

minimize
θ, λ ∈ (Rnθ ,Rnλ)

l(θ,λ) = 1

N

N∑
n=1

(ûn(θ)− un)2

subject to
∂u(t, x)

∂t +N [u;λ] = 0, t = [0, T],

(25)

Additionally, the parameters λ turn into parameters of the PINN
[12].
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The loss function of the neural network û(t, x;θ) consists of the two
components: the error of the fit to the data, and the violation of the
PDE constraint multiplied by a weighting factor µ.

minimize
θ, λ ∈ (Rnθ ,Rnλ)

l(θ,λ) = 1

N

N∑
n=1

(ûn(θ)− un)2 + µ

(
∂u
∂t +N [u;λ]

)
(26)

The parameters λ are learnt by being optimised along the
neural network parameters [12].
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To train the neural network û(t, x;θ) and discover the parameters λ,
data is needed:

Collocation points, NPDE: scattered points within the domain where the PDE
is enforced;
Initial/boundary points, Nu: points where the solution is known to enforce
initial and boundary conditions, as well as to discover the unknown
parameters λ.

Unlike the problem of ”data‑driven solutions”, in this case
some training data from the solution is needed, which can be
experimental data [12].
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Consider a diffusion equation with an unknown parameter C and
Dirichlet boundary conditions [12]:

∂u
∂t = C∂

2u
∂x2 − e−t(sin(πx)− π² sin(πx)), x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = sin(πx),
u(t,−1) = u(t, 1) = 0.
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First, we define the penalty term by rewriting the PDE and build the
loss function [12]:

minimize
θ ∈ Rnθ

l(θ) = 1

Nu

Nu∑
n=1

(ûn(θ)− un)2+

1

NPDE

NPDE∑
n=1

(
∂u
∂t − C∂

2u
∂x2 + e−t(sin(πx) + π² sin(πx))

) (27)

Then we proceed by approximating u(t, x) by a neural network [12].
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Then we start by defining the geometry and time domain of the
problem using the built‑in classes [12, 9]:

geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
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Next, we code the PDE [12, 9]:

def pde(x, u):
du_t = dde.grad.jacobian(u, x, i=0, j=1)
du_xx = dde.grad.hessian(u, x, i=0, j=0)

return (dy_t - C * dy_xx + tf.exp(-x[:, 1:])
* (tf.sin(np.pi * x[:, 0:1]) - np.pi ** 2
* tf.sin(np.pi * x[:, 0:1])))

The first argument x is a vector in which the first component is the
x‑coordinate and the second component is the t‑coordinate. The
second argument u is the output given by the neural network. C is
an unknown parameter that will be initialised as 2.0 [12, 9].

C = dde.Variable(2.0)
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Then we define the initial and boundary conditions using the
geometry and time domains previously defined:

bc = dde.icbc.DirichletBC(geomtime, func,
lambda _, on_boundary: on_boundary)
ic = dde.icbc.IC(geomtime, func, lambda _,
on_initial: on_initial)

The reference solution is [12, 9]:

def func(x):
return np.sin(np.pi * x[:, 0:1]) * np.exp(-x[:, 1:])
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In this problem, we provide extra information on some training
points so the parameter C can be identified from these
observations. We generate 10 equally‑spaced input points (x, t),
with x ∈ [−1, 1] and t = 1, using the corresponding exact solution
[12].

observe_x = np.vstack((np.linspace(-1, 1, num=10),
np.full((10), 1))).T
observe_y = dde.icbc.PointSetBC(observe_x,
func(observe_x), component=0)
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Now, we have specified the geometry, PDE, initial and boundary
conditions, and extra observations. Thus we define the
time‑dependent PDE problem using the built‑in function [12, 9]:

data = dde.data.TimePDE(geomtime, pde,
[bc, ic, observe_y],
num_domain=40, num_boundary=20, num_initial=10,
anchors=observe_x, solution=func, num_test=10000)

The number 40 is the number of training points sampled inside the
domain, NPDE. The number 20 is the number of training points
sampled on the boundary, 10 are the initial points for the initial
conditions, furthermore anchors is the additional training points Nu
[12, 9].



Example ‑ Diffusion Equation

Cecília Coelho, Luís Ferrás and Bernd Zimmering
Neural Networks for Solving Differential Equations 66/107

Next we define a neural network architecture. Here, we use a fully
connected neural network of depth 4 and width 32 [12, 9]:

net = dde.nn.FNN([2] + [32] * 3 + [1], "tanh",
"Glorot normal")

Then we build the network, choose an optimiser and pass the
unknown parameter C as a trainable variable [12, 9]:

model = dde.Model(data, net)
model.compile("adam", lr=1e-3,
metrics=["l2 relative error"],
external_trainable_variables=C)
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We then train the model for 50000 iterations and output C every
1000 iterations:

variable = dde.callbacks.VariableValue(C, period=1000)
losshistory, train_state = model.train(iterations=50000,
callbacks=[variable])

We also save and plot the best trained result and loss history [12, 9]:

dde.saveplot(losshistory, train_state, issave=True
, isplot=True)
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What happens if we change the number of training points inside the
domain? What about in the inital and boundary conditions?
Use PINNs to discover σ, ρ, β for the following Lorenz system:

dx
dt = σ(y− x), dy

dt = x(ρ− z)− y, dz
dt = xy− βz, t ∈ [0, 3]

x(0) = −8, y(0) = 7, z(0) = 27.

The true values are 10, 15, and 8
3 , respectively.
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Challenges on Differential Equations Formulation for Describing Real‑world
Systems
Neural Ordinary Differential Equations
Hands‑on with the Torchdiffeq Library
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Often the equations that model systems are unknown;
When experimental data is available, mathematical models can be fitted;
Traditional techniques require expert‑knowledge and are a ”trial and error”
process.
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Neural networks are universal approximators [6];
Experimental data can be used to train a neural network to fit the data;
However, they fit time‑independent functions to data [3];
Data has to be regularly‑sampled for training [3];
Neural Ordinary Differential Equations adjust a time‑dependent function to
data, an ODE [3].
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In Residual Networks, we consider the following transformation of a
hidden state from layer t to layer t+ 1:

ht+1 = ht + ft(ht,θt), (28)

where ht ∈ Rd is the hidden state at layer t, θt represents the
parameters of the network determined by the learning process (the
weights and biases), and ft : Rd → Rd is a differentiable function.
Assuming we have a finite number of layers, for the residual
forward problem presented in (28) to be stable, it is recommended
to control the variation of ft(ht,θt) across iterations. Therefore,
introducing a positive constant δ, one can control the variation of ft:

ht+1 = ht + δft(ht,θt). (29)
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This equation can be rewritten as:

ht+1 − ht
δ

= ft(ht,θt), (30)

and taking the limit δ → 0, we obtain the following ODE,

dh(t)
dt = f(t, h(t),θ(t)). (31)

defined over a certain time interval t ∈ [t0, T]with T > t0. Note that
while it is indeed true that the parameter δ provides a means to
regulate the stability of the forward problem (29), the stability is not
solely determined by δ but also influenced by the variations in the
weights.

Eq. (31) extends the discrete nature of the Residual Network, Eq.
(29), to a continuous model.
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Assume we have a collection of ordered data (N+ 1 ordered
observations) x = {x0, x1, . . . , xN}, which represent the state of
some dynamical system at discrete instants ti over the time interval
[t0, T] (with tN = T). Each xi = (x1i , x2i , . . . , xdi ) ∈ Rd, i = 0, . . . ,N is
associated with instant ti.
We assume that the given data can bemodelled by the initial value
problem in Eq. (32). This allows us to determine the behaviour of
the dynamical system at any instant within the interval [t0, T] [3, 4].

dx(t)
dt = f(t, x(t))

x(t0) = x0, t ∈ [t0, T].
(32)
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𝑑𝒙(𝑡)

𝑑𝑡
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Figure 2: Fit of an ODE to data {x0, x1, x2, x3, x4} obtained experimentally or
provided by a dynamical system. The blue symbols represent the data points,
while the orange line represents the fit obtained from the initial value problem
shown on the right. Each vector xi corresponds to a specific instant ti. The initial
value problem allows us to determine the behaviour of the dynamical system at
any instant within the interval [t0, T] [3, 4].
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The problem is that neither the solution x(t) ∈ Rd nor the function
f(t, x(t)) : R× Rd → Rd are known (the ODEmay be linear,
nonlinear, etc).
Neural ODEs provide a viable solution to approximate the initial
value problem (32) using only the data x = {x0, x1, . . . , xN} (the
ground truth in our Neural ODE).
Let h(t) be an approximation of x(t).

dh(t)
dt = fθ(t, h(t)),

h(t0) = x0 t ∈ [t0, T].
(33)

The right‑hand side’s analytical expression (f(t, x(t))) is replaced by
a NN (denoted by fθ(t, h(t))), where θ represents the weights and
biases of the network [3, 4].
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To illustrate the Neural ODE, we assume that the numerical method
used to solve the initial value problem (33) is the explicit Euler
method. A mesh is defined for each interval [ti, ti+1],
i = 0, . . . ,N− 1. Therefore, given the initial condition h(t0) = x0, a
(uniform) mesh {tim = m∆ti : m = 0, 1, ...,Mi} on an interval
[ti, ti+1]with some integerMi and∆t := (ti+1 − ti)/Mi, we compute
the numerical solution as (for the interval [t0, t1]) [3, 4],

𝑡0 𝑡1 𝑡2                           

𝑡0
0 𝑡4

0𝑡1
0 𝑡2

0 𝑡3
0

ĥ(t01) = x0 +∆tfθ(t00, x0)
ĥ(t02) = ĥ(t01) + ∆tfθ(t01, ĥ(t01))

...
ĥ(t0M0

) = ĥ(tM−1) + ∆tfθ(tM−1, ĥ(tM−1).
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We can say that the Neural ODE consists of twomain components: a
numerical ODE solver, and the neural network fθ(t, h(t)) [3, 4].
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Figure 3: Schematic of a Neural ODE iteration. Note that along the sequence of
figures (left to right) the NN fθ(t, h(t)) doesn’t change.
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We can use both adaptive and fixed‑step ODE solvers. When the
step size is explicitly specified∆t, the discretization takes place for
each sub‑interval of observations [ti, ti+1]with the specified step
size yielding (ti+1 − ti)/∆t time steps [3, 4].

𝑡0 𝑡1 𝑡2                           

𝑡0
0 𝑡4

0𝑡1
0 𝑡2

0 𝑡3
0

Figure 4: Example of a typical mesh used in the numerical solution of Eq.
(33) for each interval [ti, ti+1], i = 0, . . . ,N− 1, where ti is the time of
observation xi [4].
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Different numerical solvers can be used to obtain the numerical
solution of (33), for the time being, we will refer to a numerical
solver as ODESolve. Assuming i = 1, . . . ,N and that that tN
corresponds to T, each state h(ti) is then numerically given by [3, 4],

ĥ(ti) = ODESolve(fθ, x0, {t1, . . . , tN}). (34)
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Consider you have experimental data from a population growth.
Here, we will use the synthetic data fabricated earlier. We want to
model the dynamics using a Neural ODE [3, 4].
First, the torchdiffeq and torch modules are imported [4, 2]:

import torch
import torch.nn as nn
import torch.optim as optim
from torchdiffeq import odeint

With this Neural ODE we will be able to predict the population P at
each time instant given the initial condition:

true_y0 = torch.tensor([2.518629])



Example ‑ Population Growth

Cecília Coelho, Luís Ferrás and Bernd Zimmering
Neural Networks for Modelling Differential Equations 82/107

Next, we define a neural network to approximate the right‑hand
side of the ODE [4, 2]:

class ODEFunc(nn.Module):
def __init__(self):

super(ODEFunc, self).__init__()

self.net = nn.Sequential(nn.Linear(1, 50),
nn.Tanh(), nn.Linear(50,50),
nn.ELU(), nn.Linear(50, 1))

for m in self.net.modules():
if isinstance(m, nn.Linear):

nn.init.normal_(m.weight, mean=0, std=0.1)
nn.init.constant_(m.bias, val=0)

def forward(self, t, y):
return self.net(y)
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Then we compile the network and choose an optimiser:

func = ODEFunc()
optimizer = optim.Adam(func.parameters(), lr=1e-5)

We define the time instants in which we want to know the solutions
[4, 2]:

t = torch.linspace(0., 1, 500)
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Now, we have specified the network, optimiser and we have
training data available. Then we define the training loop:

for itr in range(1, 2000):
pred_y = odeint(func, true_y0, t, method='rk4')
loss = nn.MSELoss()(pred_y, true_y)

optimizer.zero_grad()
loss.backward()
optimizer.step()
for itr % 100 == 0:

print('Iter {:04d}|Loss {:.6f}'.format(itr, loss))

Here we specify the numerical method to be a fixed‑step one and
print the loss value every 100 iterations [4, 2].
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What happens if we change the numerical method from a fixed‑step solver
to an adaptive‑solver?
Choose a known differential equation that is used to model a real system.
Solve it to create a synthetic dataset. Try using a Neural ODE to model the
data.
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Physics‑Informed Neural Networks versus Neural Ordinary Differential
Equations
What’s Next?
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PINNs
Mesh‑independent;
Suitable for problems in
irregular or complex
domains;
Generalise to unseen data;
Computes at arbitrary times
directly;
Data‑hungry;
Sensitive to hyperparameter
choices and NN architectures;
Computationally expensive to
train;
Lack transparency and
interpretability.

Numerical Methods
Somemethods rely on
structured grids;
Computationally expensive in
high dimensions;
Iterative method;
Work with limited data;
Established guidelines;
Computationally efficient for
some problems;
Well‑understood algorithms.
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Neural ODEs
Can handle
irregularly‑sampled data;
Allows predictions at any
point in time and
discretisation;
Computationally intensive
due to solving differential
equations at each training
iteration;
May be unstable due to the
numerical solver inside.

Traditional NNs
Only handles
regularly‑sampled data;
Makes predictions based on
discrete time steps;
More straightforward training
process.
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What’s Next?

Photo: Florian Berger / Unsplash
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Learning families of solutions with Neural Operators [7]
Learning in Fourier [8] or Laplace space [5, 1, 16]
Neural ODEs combined with ODE‑RNN, Latent ODE [3, 13]
Learning other classes, e.g. integro‑differential [14] and fractional equations
[4, 15]
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A PINN is used to get one solution of a problem. What if you change
the parameters (e.g. diameter D)?

Photo by KOBU Agency on Unsplash 

𝐷

PINNs need to compute a new solution for that. So how can we
learn a mor general model?
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The impulse response can be thought as the reaction of a system
for a very short and strong impulse (e.g. a drop on water)

Photo by Terry Vlisidis on Unsplash

We use PDE to describe the wave. For a fixed point (e.g. if we
measure level sensor) we use an ODE.
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Drive a first‑order ODE with input f(t):

u′(t) + a u(t) = f(t), u(0) = 0, a > 0.

Its impulse response (response to a unit‑area impulse at t=0) is

h(t) = e−at 1t≥0.

Then the whole output is the convolution of input with h:

u(t) = (h ∗ f)(t) =

∫ t

0

e−a(t−s)︸ ︷︷ ︸
kernel / impulse response

f(s) ds.

Read: the kernel e−a(t−s) says how strongly a past input at time s
influences u at time t.
Impulse = Dirac δ(t): “infinite peak, unit area”.
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The convolution can be seen as an integral operator parameterized by a:

(Gaf)(t) =

∫ t

0

h(t, s; a) f(s) ds, h(t, s; a) = e−a(t−s) 1s≤t.

General operator view (ODE/PDE).

u(x) = (Gcf)(x) =

∫
Ω

κ(x, y; c) f(y) dy + ϕ(x; c).

c represents physical parameters, boundary conditions, or geometry.
For homogeneous BCs, ϕ≡0. In time‑dependent problems, xmay include time,
and the kernel may integrate over space and/or time.
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Learn the Neural Operator [7] by learning its kernel:

(Kθf)(x) = σ
(

W f(x)︸ ︷︷ ︸
local (pointwise)

+
∫
κθ(x, y) f(y) dy︸ ︷︷ ︸

nonlocal (global mixing)

+ b(x)
)
.

Intuition: κθ is a learned impulse response.
If the mapping is (near‑)linear, set σ = Id and optionallyW=0.
What can f encode?

Coefficients / material: a(x) (conductivity, permeability)
Forcing / load: f(x, t) (PDE) or f(t) (ODE)
Boundary / initial data: g on ∂Ω, u0 inΩ
...
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Start with z0 = f. For layers ℓ = 0, . . . , L− 1:

zℓ+1(x) = σ
(
Wℓ zℓ(x) +

∫
κθ,ℓ(x, y) zℓ(y) dy+ bℓ(x)

)
.

Output: û = zL (or an extra linear readout).
Linear case: σ = Id,Wℓ optional.
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Train once, reuse: fast predictions for many new inputs (no
re‑optimisation).
Resolution/mesh agnostic: train on one grid, evaluate on another. On
structured grids (spectral variants) this is typical; for arbitrary
meshes/geometries use graph/mesh operator designs and encode
geometry.
Learn a family: generalise across coefficients/BCs/forcings seen in training.

Caveat: needs paired data (f, u); out‑of‑distribution generalisation is not
guaranteed.
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u(z) =

∫
κ(z, z′) f(z′) dz′,

where z can be x (space), t (time), or (x, t) (spacetime). Different neural
operators approximate this integral in different domains.

While the landscape of Neural Operators is wide, the next slides
introduce two interesting examples.
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Idea. A spatial FFT turns convolution into pointwise multiplication
in k–space; time stays as channels.
Operator view (per t).

û(k, t) = Rθ(k, t) f̂(k, t) with f̂ = Fx(f)

.
FNO are normally stacked in layers:

vl+1(x, t) = σ
(
Wlvl(x, t) + F−1

x (Rθ,lFx[vl])
)
.

Fast: convolution to multiplication; few low/midmodes suffice. Valid when:
roughly shift‑invariant spatial kernel on a uniform grid; boundaries via
padding/periodisation.
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Idea. A temporal Laplace transform turns causal time–convolution
into pointwise multiplication in s–space; space stays as channels.
Operator view (per x).

Lt[u](x, s) = Hθ(x, s)Lt[f](x, s) with u = f ∗ ht
.
LNO a also stacked in layers:

vl+1(x, t) = σ
(
Wlvl(x, t) + L−1

t (Hθ,l Lt[vl])
)
.

Why fast: convolution to multiplication.
Valid when: roughly time–shift–invariant causal kernel on a uniform time grid.
Relation to FNO: same spectral trick, but along time; can be paired with spatial
FFT.
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Staying in the Laplace Domain: from
fields to sensor signals
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Neural Laplace [5] skips explicit ODE time‑stepping by learning in
the Laplace domain and performingL−1 numerically.

23/10/2025 |  Bernd Zimmering | HSU-AI – Institute for Artificial Intelligence | Helmut Schmidt University Hamburg 6

Background – Signals in the Laplace Domain

Time Domain Laplace Domain

Derivates to 

Algebraic Eq.

Delays are easy to handle 
Important Properties

Query grid

Key idea: The Laplace transform turns derivatives into (complex)
algebra and convolutions into multiplication.
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Laplace Net [16] is a solver free sequence to sequence model. It
learns an input x(t) output y(t)mapping based on an historical
sequence. It is a modular architecture that can also model delays
andmemory.

LP-Transform
Encoder

Transfer Function

Forecast

Queries

Fourier 
Inverse LT

History

Figure 5: Architecture of Laplace‑net. Bluemarks learnable parts. Complex values
are purple.
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Thank you for your time and patience!
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