Neural Networks and
Differential Equations: From

Infinite Layers to Continuous
Modelling

by

Cecilia Coelho:, Luis Ferras:: Bernd Zimmering:

nstitute for Artificial Intelligence, Helmut Schmidt University, Hamburg, Germany
2CEFT and DEMec (Section of Mathematics) - FEUP, University of Porto, Portugal
3Centre of Mathematics (CMAT), University of Minho, Portugal
cecilia.coelho@hsu-hh.de, lferras@fe.up.pt

EHSUZ 2 m

" Introduction to Differential Equations

What are Differential Equations
Solving Differential Equations
Differential Equations in Real life

" Neural Networks for Solving Differential Equations

Challenges of Numerical Methods
Physics-Informed Neural Networks
Hands-on with the DeepXDE Library

" Neural Networks for Modelling Differential Equations

Challenges on Differential Equations Formulation for Describing Real-world
Systems

Neural Ordinary Differential Equations

Hands-on with the Torchdiffeq Library

- Wrap-up
Physics-Informed Neural Networks versus Neural Ordinary Differential
Equations
What’s Next? (Neural Operators, Neural Laplace, etc.)
Outline of the Tutorial 1/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Availability of the Materials

All material can be found at the official tutorial’s website, including

a jupyter notebook with the coding examples and hands-on that
will be used.

https://nnde-ecai.github.io/

Informations

2/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

https://nnde-ecai.github.io/

Introduction to Differential Equations

> What are Differential Equations
= Solving Differential Equations
= Differential Equations in Real life

Introduction to Differential Equations 3/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Let’s look at a simple, classic example of building a mathematical
model to describe the evolution over time of a certain population
(human, animal species, bacterial, etc.).

Suppose that the number of individuals in a certain population at a
given time tis given by

P(t), (1)

that is, P(t) represents a function of time (the population as a
function of time). To develop the model, let’s fix a certain time
interval

[t,t+ At]. (2)

For example, if t = 1hour and At = 4 hours, the interval would be
[1; 5]. We will try to find a relationship between the population at
time t (P(t)) and the population at time t + At (P(t + At)).

Introduction to Differential Equations 4/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

What happens during this time interval is that there was a certain

number of deaths (M) and a certain number of births (N).
Our common sense suggests that:

= The larger the population, the higher the number of deaths and births (e.g.,
ifin a population of 1000 individuals we have 10 deaths, then in a population
of 2000 individuals we would expect 20 deaths). In other words, the number
of deaths (M) and births (N) is proportional to the number of individuals
(P(t)):

N=aP(t), M=pP(t) (3)
where e and 3 (€ R™) are the proportionality constants, which may vary
from population to population.

= Itis also expected that N and M depend on the time interval At. That is, the
longer the time interval, the greater the number of births and deaths.
Introduction to Differential Equations 5/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

This double dependency of N and M on P(t) and At can then be
expressed as:

N = aP(t)At, M= BP(t)At. (4)
Consequently, the change in population over the time interval
[t, t+ At]is given by P(t + At) — P(t) = N — M, that is:
P(t+ At) — P(t) = (o — B)P(t)At. (5)
Dividing both sides by At, we obtain the following equation:

P(t+ At) — P(t)
o = (= AP, ©)

Introduction to Differential Equations 6/107
Cecilia Coelho, Luis Ferras and Bernd Zimmering

_ P(t+At)—P(t)
Slope= 0

P(t+At) [Slope= dP;tt))

PA) oo

Y

Taking the limit as At — 0, we obtain the following differential
equation:

dpP
which is the well-known Malthusian equation, describing the

expected variation (model) of population growth (. >) or decline
(a < B). Often, the notation P'(t) is used instead of %.

Introduction to Differential Equations 7/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Let k = o — f3, then cet with ¢ € R an arbitrary constant, is the
solution of our problem:

dp
— = kP(t 8
o = kPO, ®
If we denote by Py the number of individuals at the beginning of the
study (to = 0), P(0) = Py , then the solution to the model is given by
(the arbitrary constant become a specific value: Py):

P(t) = Pyelt (9)
P(t) P(t) P(t)
k>0 k=0 k<0
R R R ——
+——
t t t
Introduction to Differential Equations 8/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

The differential equation % = kP(t) together with the initial
condition P(0) = Py is known as an Initial Value Problem.

This differential equation, which represents the Malthusian model,
can also be written in the form:

d);(;) =ky(x) or y =ky
where the typical notation of x and y is used. From now on, we will
preferably use this notation, where y is a function of x, with x being
the independent variable.

Introduction to Differential Equations 9/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

What are Differential Equations

A differential equation is an equality that involves a function of one
or more variables and its derivatives up to a certain order.

Example

X 32‘;/ — Xy <dy) =0 or X}y —xy(y)'=0 (10)

d
y=y (11)
Y +2yy = 3x (12)
3

% + 5VZ—‘; =cost or V" +5wW =cost (13)

0%u 0% 0?u
2 o +2a2:0 (14)

Introduction to Differential Equations 10/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Definition (Ordinary Differential Equation (ODE))

A differential equation involving derivatives of one or more
dependent variables with respect to an independent variable is
called an ordinary differential equation (ODE).

Definition (Partial Differential Equation (PDE))

is a differential equation that involves partial derivatives of a
multivariable function. A PDE involves one or more dependent
variables and their partial derivatives with respect to two or more
independent variables.

Example: For a function u(x, y), a PDE might look like:

o
oxz oy

This is known as the Laplace equation, which appears in heat
conduction, fluid flow, and electrostatics.

Introduction to Differential Equations 11/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

= The theory of differential equations began in the late 17th century,
influenced by the works of G.W. Leibniz, I. Barrow, I. Newton, and the
Bernoulli brothers, who solved simple first and second-order equations in
mechanics and geometry. A notable milestone occurred on November 11,
1675, when Leibniz solved the equation % = X, using the integral symbol

()

The Malthus model is a simple ODE known as a separable variable differential
equation. Its solution can be easily derived, as described in the following
equations.

Assuming that P # 0, we start with:

dp 1
— =kP <& = dP = kdt, (15)
dt P

Next, we apply the integral to both sides of the equation:

/% dp = /kdt — In|P| = kt +c1 = P(t) = ca€¥, (16)

where ¢ and co are constants, with co € Ra'.

Introduction to Differential Equations 12/107
Cecilia Coelho, Luis Ferras and Bernd Zimmering

=" Newton’s equation of motion was pivotal in developing calculus,
categorizing first-order equations into forms such as % = f(x,y). Leibniz
introduced the notation for derivatives and integral, and he developed the
theory of separable differential equations and discovered methods for
solving linear first-order equations.

" The 18th century saw significant advancements in the theory of differential
equations, with contributions from Jacob and Johann Bernoulli, as well as
prominent mathematicians like Clairaut, D’Alembert, and Euler. Euler
established conditions for exact first-order equations and developed the
theory of integrating factors.

=" In the 19th century, Dirichlet proved the convergence of Fourier series, and
Cauchy rigorously defined convergence concepts. Liouville established the
limitations of solving differential equations using elementary functions,
while the works of Picard and Peano addressed the existence and
uniqueness of solutions for initial value problems.

=" The second half of the 20th century witnessed advancements in
computational methods for solving differential equations, thanks to the
contributions of Carl Runge and Martin Kutta.

Introduction to Differential Equations 13/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Applied Pure

Engineering . .

Mathematics Mathematics

Engineers apply scientific Applied mathematicians use Pure mathematicians study

and mathematical principles mathematical techniques and mathematical concepts for their

to design, bU'_ld and gnalyze theories to solve practical intrinsic value, without

SyStemS»ThQII’WOFk is problems in various fields. They necessarily considering

mostly practical and focus on modeling real-world practical applications. They are

oriented towards solving phenomena and finding i i

real-world problems. numerical solutions. theoretical aspects of

mathematics.

The three fields are all essential because they approach problems
differently.

=" Pure mathematicians focus on determining whether a mathematical
solution exists and under what conditions it can be applied.

" In contrast, engineers assume that a solution exists and immediately begin

working on finding an exact or approximate solution to the problem.
Introduction to Differential Equations 14/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

For example, mathematicians are concerned with the following
type of results for differential equations:

Theorem (Existence and Uniqueness of Solution)
Consider the differential equation

dy
o Ty

where

1. The function fis continuous in a domain D of the xy-plane;

2. The partial derlvat/ve IS also continuous in D.
Let (xo,Y0) be a pointin D. Then the differential equation has a
unique solution ¢ in the interval |xo — h, xo + h[(or |x — xo| < h), for
sufficiently small h, which satisfies the condition

¢ (x0) = Yo
Introduction to Differential Equations 15/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

We previously discussed how to find the analytical solution to the
equation
dpP

= = kP(D)

with the initial condition P(0) = Py.

However, not all differential equations are this straightforward. In
many cases, we must rely on numerical solutions to solve more
complex equations!

Introduction to Differential Equations 16/107
Cecilia Coelho, Luis Ferras and Bernd Zimmering

Solving Differential Equations

SOLVER

Scientists

Numerical Solution

Physical phenomenon Mathematical Model

ou Monday Tuesday Wednesday
PE+PV<(uu)=-VP+V~T %; O
/
/ /

Physical phenomena described by a Prediction of the evolution of physical
mathematical model (differential phenomena by numerical solution of
equation). the differential equations.

Introduction to Differential Equations
Cecilia Coelh

Solving Differential Equations

Peninsula and Balearic Canary slands Numerical Models €

Islands

12 Saturday 13501
° 3x Pp € 09:00 10:00 11:00 1200 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 >

>

Temperature
-------l:lI:I----------I:I:I:I----------
30 25 20 415 10 -8 6 4 & 8 10 12 14 16 18 20 22 24 25 28 30 32 34 36 38 40 4 4

Please note that while we can obtain weather forecasts for every
hour, we cannot provide a forecast for a specific time, such as 10:36.

Introduction to Differential Equations 18/107
Cecilia Coelho, Luis Ferras and Bernd Zimmering

https://www.aemet.es/en/eltiempo/prediccion/modelosnumericos/harmonie_arome

Solving Differential Equations

Consider the simple differential equation,

dpP

dt
with the initial condition P(0) = Py. We will now obtain its
numerical solution!

For that we need to define the kind of approximation we will use,
that is, the numerical method:

™ Finite Difference (FD)
= Finite Volume (FV)

= Finite Elements (FE)
-

other methods ...

kP(t)

Introduction to Differential Equations 19/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Solving Differential Equations - FD

= Define an interval: [0, 2]
= Create a mesh: we will consider 5 mesh elements (4 intervals of 0.5) At = 0.5

Py Py P, Py Py

@ a4 d

0.5 1 15 2 t

L]
A

= Initial condition: P(0) = Py = 2
= oletk=1

" Objective: determine the discrete solution Py, Pa, Ps, Py

Introduction to Differential Equations 20/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Solving Differential Equations - FD

. L dpP
= Obtain approximationsfor — att; = 0.5, to =1, t3 = 1.5, t =2

dt
Slope= P(t+A3—P(t)
P(t+At) / Slope=%
P(t)
t+At
= dP(ti) - Pi—Pi_1 i=1 .4
dt At B

= Solvethe system of equations (Explicit Euler Method):

il ;tpo =Py Py =Py + AtPy
Py = P1 + AtPy
P3 = Py + AtPs
Py = P3 + AtP3
Introduction to Differential Equations 21/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Let ds(t) = F(t, S(t)) be an explicitly defined first order ODE. That is,
Fisa fu nction that returns the derivative, or change, of a state given
a time and state value. Also, let t; be a numerical grid point of the
interval [to, t] with spacing At. Without loss of generality, we
assume that ty = 0, and that t = NAt for some positive integer, N.
We then approximate the solution at S(t;;1) by:

S(tir1) = S(t) + (j+1‘tj)7
which can also be written as

S(t+1) = S(4) + AtF(t;, S(4)

Introduction to Differential Equations 22/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Solving Differential Equations - FD

S(t)
S(t /
(\ ,
/
Exact /
solution 7
7 /SIope: F(t;, S(t))
St)}--== ! Numerical
i ! solution
t! ! Tt

At

https://pythonnumericalmethods.studentorg.berkeley.edu

Introduction to Differential Equations 23/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Solving Differential Equations - FD

Implicit Euler Method:

S(ti1) = S(t;) + AtF(ty 1, S(ti11))

= forour previous example, we obtain the following system of equations:

P1— Po
= kP
At !
P2 — Py
= kP
At 2
P3 — Ps
= kP
At ’
Py — Ps
= kP
At ‘
Introduction to Differential Equations 24/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Solving Differential Equations - FD

»* The system can be rewritten as:
(1 — kAt)P, = Py,
—P1 4 (1 — kAt)Py =0,
—Py + (]. — kAt)Pg =0,
—P3 + (1 — kAt)P4 =0.

= In matrix form, for the unknowns P = [P1, P2, P3, P4]", this becomes:

1—kAt 0 0 0 Py Po
-1 1-kAt 0 0 P2l _ |0
0 ~1 1-kAt 0 Ps| = |0
0 0 —1 1—kAt] [Py 0

Introduction to Differential Equations 25/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Its now time for you to do it by yourselves (Part 1)!

df(t)

The differential equation T et with initial condition f(0) = -1

has the exact solution f(t) = —e™t. Approximate the solution to this
initial value problem between 0 and 1 in increments of 0.1 using the
Explicit Euler method. Plot the difference between the
approximated solution and the exact solution.

Play with the solver, model parameters and the number of mesh
elements.
https://github.com/NNsDEsTutorial/NNsDEsTutorial.github.io

Introduction to Differential Equations 26/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

https://github.com/NNsDEsTutorial/NNsDEsTutorial.github.io

Solving Differential Equations - Hands On

Its now time for you to do it by yourselves (Part I)!

import numpy as np
import matplotlib.pyplot as plt

Define parameters

= lambda t, s: np.exp(-t) # ODE

0.3 # Step size

= np.arange(0, 1 + h, h) # Numerical grid
s@ = -1 # Initial Condition

t I —h H*

Explicit Euler Method
s = np.zeros(len(t))
s[0] = s0O

for i in range(0, len(t) - 1):
s[i + 11 = s[i] + hxf(t[i], s[i])

Introduction to Differential Equations 27/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Solving Differential Equations - Hands On

Cont.

plt.
plt.
plt.
plt.

for

plt.
plt.
plt.
plt.
plt.

figure(figsize = (6, 5))

plot(t, s, 'bo--', label='Approximate')
plot(t, -np.exp(-t), 'g', label='Exact')
title('Approximate and Exact Solution \
Simple ODE')

xlabel('t")
ylabel('f(t)")

grid()

legend(loc="'lower right')
show ()

Introduction to Differential Equations

28/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Its now time for you to do it by yourselves (Part 11)! You do not need
to implement the numerical solver, Python can easily deal with that:

sol = solve_1ivp(ODE, [0, 5], y0, t_eval=t)

Consider a population of organisms that follows a logistic growth.
The population size P(t) at time t is governed by the following
differential equation:

P'(t) = rP(t) (- P(t)> , P(to) = 100, (17)

K
where ris the growth rate, and K is the carrying capacity of the
environment. Consider r = 0.1, K = 1000. Also, consider a mesh of
200 points.
Play with the solver, model parameters and the number of mesh
elements

Introduction to Differential E.quaticns 29/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Differential Equations in Real Life

Most interesting real life applications are modelled by the Partial
Differential Equations

molecular

Introduction to Differential Equations 30/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Differential Equations in Real Life

Most interesting real life applications are modelled by the Partial
Differential Equations

Streamlines colored by velocity. Width proportional to turbulent viscosity.

They are used by engineers and physicists all

A 01353 N " .
Navier-Stokes Equations 1 ; over the world in many fields, which go from

Z aircraft design to blood circulation. They are
also very complicated to solve and that is why
they are one of the seven Millennium Prize
Problem. Solving one of these problems will
win you a million dollars

V-u=0

p2E = —Vp+ uV2u+ pF

0
¥ 2.6532x10

Introduction to Differential Equations 31/107
Cecilia Coelho, Luis Ferras and Bernd Zimmering

Differential Equations in Real Life

Introduction to Differential Equations 32/107
Cecilia Coelho, Luis Ferras and Bernd Zimmering

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Diffusion can be seen as a transport phenomena where
distribution, mixing or transport of mass/particles occurs without
requiring bulk motion (the spreading of something more widely).

. .
0' 1v 5‘ Time (t)

ou(t,x) D82u(t, X)

= 1D 1
5t o2 (D) (18)
au(t,x,y) u(t,x,y) | 9%u(t,xy)
—F—= =D 2D 19
ot Ox2 + Oy? (20) (19)
Introduction to Differential Equations 33/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

- Challenges of Numerical Methods

= Physics-Informed Neural Networks
= Hands-on with the DeepXDE Library

Neural Networks for Solving Differential Equations 34/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Challenges of Numerical Methods
Boundary condition

Boundary condition

Boundary condition

&
g
5

&
<
S
s

2
=
K

Boundary condition Boundary condition
L V7 L
]) 6 Time(t)

1

Boundary condition
L

Initial condition
Explicit
+1
u;'j —ug b u;’+1j—2u,'-;+u§'_|j N u}}H —Zu;’j+u,?’j_l
2 Ay?

)

At
Ju u J*u
2= Ploetae .
4 x= oy Implicit
et g
A Nz

At
Solve a system of equations for each time step
35/107
and Bernd Zimmering

Cecilia Coelho, Luis

Neural Networks for Solving Differential Equations

There are several numerical methods and different solvers for
solving differential equations, but nearly all of them share one
major drawback — they are time and memory-consuming!
Simulations can sometimes take months to complete.

” E n m
“) m n m
n TS dim mless velocity 1/l
s —_— S
N. Gongalves, P. Teixeira, L.L. Ferras, A. Afonso, Innovative approach to
the design of profile extrusion dies, Society of Plastic Engineers - Plastic

Research Online (2014) 10.2417/spepro.005733,

Neural Networks for Solving Differential Equations 36/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Solving differential
equations Modelling differential

= Complete knowledge of the equations
"

system; =" Fully or partially unknown

=" Exact solutions can be found governing equations;

but not often;

Requires observed data to
adjust the parameters or
functions to match the data;

=" Numerical solutions involve
numerical methods;

= Used for finding the exact =" Involves traditional
solutions for ODEs and PDEs optimization methods;
in physics and engineering, = Used for modeling systems in
where the system’s behavior epidemiology, ecology,
is well-defined finance, and others.

mathematically.

Neural Networks for Solving Differential Equations 37/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Neural Networks for Solving DEs

= Real systems in physics, chemistry and engineering are typically described
by differential equations;

= When differential equations are known, numerically solving them can be
computationally prohibitive [11];

- Physics-Informed Neural Networks (PINNs) use a neural network to
approximate the curve of solutions [11];

= PINNSs offer a faster and more cost-effective alternative to numerical
methods when doing predictions [11].

Neural Networks for Solving Differential Equations 38/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Physics-Informed Neural Networks

Small Data

Lots of Physics Some Data

Some Physics Big Data

No Physics

Raissi, M., Perdikaris, P., Ahmadi, N., & Karniadakis, G. E. (2024). Physics-informed neural networks and extensions. arXiv preprint arXiv:2408.16806.

Cai, S., Wang, Z., Fuest, ., Jeon, Y. J., Gray, C., & Karniadakis, G. E. (2021). Flow over an espresso cup: inferring 3-D velocity and pressure fields from
tomographic background oriented Schlieren via physics-informed neural networks. Journal of Fluid Mechanics, 915, A102.

Neural Networks for Solving Differential Equations 39/107
ili I s and Bernd Zimmeri

Consider a parameterised and nonlinear partial differential
equation (PDE) of the general form:

Ju(t, x)
ot
where u(t, x) is the solution, A[u;] is a differential operator and 2
the domain of x. This setup encapsulates a wide range of problems
in mathematical physics including conservation laws, diffusion

processes, advection-diffusion-reaction systems, and kinetic
equations.

+N[u; A\ =0, xeQ,telo,T], (20)

Neural Networks for Solving Differential Equations 40/107
Cecilia Coelho, Luis Ferras and Bernd Zimmering

As a motivating example, take the 1D Burger s equation,
corresponding to N'[u; \] = /\1u — X2 8)(2

ou ou o%u

= Ot T]. 21
N +>\1u6X)‘282 0, xeQ,tel0,T] (21)

This equation arises in various areas of applied mathematics,
including fluid mechanics, nonlinear acoustics, gas dynamics, and
traffic flow. For small values of the viscosity parameters A1, Ao, it is
hard to solve by numerical methods.

Given noisy measurements of the system, we are interested in the
solution of two distinct problems: data-driven solutions of PDEs,
and data-driven discovery of PDEs [11].

Neural Networks for Solving Differential Equations 41/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Problem: Given fixed model parameters \, what can be said about
the unknown u(t, x)?

PINNs approximate the solution u(t, x) using a neural network

u(t, x; @), where 0 represents the network parameters. The PINN is
trained to fit the data (u,) and satisfy the PDE, given by Eq. (20) [11].
This can be formulated as a constrained optimisation problem:

N
1
minimize [(0) = —) (0,(0) — uy)?
0 € R™ N ; (22)
. ou(t,x
subject to (81‘) +Nu;\] =0, t=10,T],
Neural Networks for Solving Differential Equations 42/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

To do this, we can rewrite the constrained problem (22) into an
unconstrained problem by using a penalty method [10]:

=~

L o Qu(t,x)
minimiz 0) = 0) —u,)? . ;
inimize 1) = 13 (6n(0) —en)* e (P N

(23)
Then, the loss function of the neural network (t, x; @) consists of
two components: the error of the fit to the data, and the violation of
the PDE constraint multiplied by a weighting factor p [11].

Neural Networks for Solving Differential Equations 43/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

To train the neural network i(x; 8), data is needed. Collocation
points are crucial in training PINNs and these are taken from
locations to enforce the PDE’s loss term. Likewise, initial and
boundary training data are used to fit the data:

=" Collocation points, Nqp:: scattered points within the domain where the PDE
is enforced;

=" Initial/boundary points, N,: points where the solution is known to enforce
initial and boundary conditions [11].

Neural Networks for Solving Differential Equations 44/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - 1D Burger’s Equation

Consider the 1D Burger’s Equation with Dirichlet boundary
conditions and Ay = 1, Ao = 22 [11]:

ou ou 0.010%u

a Ua—TWZO, XE[—l,l],tE[O,l],

u(0,x) = — sin(mx),
u(t,—1) =u(t,1) =0.

Neural Networks for Solving Differential Equations 45/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - 1D Burger’s Equation

First, we define the penalty term as 24 + y&4 — 00124 anq byijld

T Ox2?
the loss function:

Ny
minimize [(0) = —
0 € R" Ny =~

1 ”"Df(au ou 00132>

JR— u_
Nppe p—t 8t+ ox T OxX2

Then we proceed by approximating u(t, x) by a neural network [11].

Neural Networks for Solving Differential Equations 46/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - 1D Burger’s Equation

To compute the derivatives of u(t, x), PINNs use backpropagation
[11].

@ .
e s obtained through

Figure 1: Schematic of the methodology used in the PINN method.

Neural Networks for Solving Differential Equations 47/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - 1D Burger’s Equation

First, the DeepXDE and TensorFlow modules are imported:

import deepxde as dde
from deepxde.backend import tf

Then we start by defining the geometry and time domain of the
problem using the built-in classes [11, 9]:

geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)

48/107
Cecilia Coelho, Luis Ferras and Bernd Zimmering

Neural Networks for Solving Differential Equations

Example - 1D Burger’s Equ

Next, we code the PDE:

def pde(x, u):
du_x = dde.grad.jacobian(u, x, i=0, j=0)
du_t = dde.grad.jacobian(u, x, i=0, j=1)
du_xx = dde.grad.hessian(u, x, i=0, j=0)

return du_t + u * du_x - 0.01 / np.pi * du_xx

The first argument x is a vector in which the first component is the
x-coordinate and the second component is the t-coordinate. The
second argument u is the output given by the neural network [11, 9].

Neural Networks for Solving Differential Equations 49/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Then we define the initial and boundary conditions using the
geometry and time domains previously defined:

bc = dde.icbc.DirichletBC(geomtime, lambda x: 0,
lambda _, on_boundary: on_boundary)

ic = dde.dicbc.IC(geomtime, lambda x: -np.sin(np.pi *
x[:, 0:1]), lambda _, on_initial: on_initial)

The first argument x is a vector in which the first component is the
x-coordinate and the second component is the t-coordinate. The
second argument u is the output given by the neural network [11, 9].

Neural Networks for Solving Differential Equations 50/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Now, we have specified the geometry, PDE, and initial and
boundary conditions. Thus we define the time-dependent PDE
problem using the built-in function:

data = dde.data.TimePDE(geomtime, pde, [bc, 1ic],
num_domain=2540, num_boundary=80, num_initial=160)

The number 2540 is the number of training points sampled inside
the domain, Nppg. The number 80 is the number of training points
sampled on the boundary and 160 are the initial points for the
initial conditions, N, [11, 9].

Neural Networks for Solving Differential Equations 51/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - 1D Burger’s Eq

Next we define a neural network architecture. Here, we use a fully
connected neural network of depth 4 and width 20:

net = dde.nn.FNN([2] + [20] * 3 + [1], "tanh",
"Glorot normal'")

Then we build the network and choose an optimiser [11, 9]:

model = dde.Model(data, net)
model.compile("adam", lr=1e-3)

Neural Networks for Solving Differential Equations 52/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - 1D Burger’s Eq

We then train the model for 15000 iterations:

losshistory, train_state = model.train(iterations=15000)

After we train the network using Adam, we continue to train the
network using L-BFGS to achieve a smaller loss [11, 9]:

model.compile("L-BFGS-B")
losshistory, train_state = model.train()

Neural Networks for Solving Differential Equations 53/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Having some test data taken from a reference solution of the 1D
Burger’s Equation, we can compute the testing metrics [11, 9]:

def gen_testdata():
data = np.load("Burgers.npz")
t, x, exact = data["t"], data["x"], data["usol"].T
XX, tt = np.meshgrid(x, t)
X = np.vstack((np.ravel(xx), np.ravel(tt))).T
y = exact.flatten()[:, None]
return X, vy

X, y_true = gen_testdata()

y_pred = model.predict(X)

f = model.predict(X, operator=pde)

print("Mean residual:", np.mean(np.absolute(f)))
print("L2 relative error:",
dde.metrics.l2_relative_error(y_true, y_pred))
np.savetxt("test.dat", np.hstack((X, y_true, y_pred)))

Neural Networks for Solving Differential Equations 54/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

= What happens if we change the number of training points inside the
domain? What about in the inital and boundary conditions?

= Use PINNs to approximate the solution of the following Lotka-Volterra
problem to know how the population of rabbits and foxes change over time

in a system:
d R 2 df R 2
- = — —0. — = —(0. — 1.06U
a U(2Ur 0.04U°rf), g U(O 002U°rf 06U,

100 15

with U = 200 and R = 20.

Neural Networks for Solving Differential Equations 55/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Problem: What are the parameters A that best describe the
observed data?

Again, PINNs approximate the solution u(x) using a neural network
u(t, x; @), where 0 represents the network parameters. The PINN is
trained to fit the data and satisfy the PDE:

N
1
minimize 1(B,0) = = (0n(6) — up)?
0, € (R, R™) N ; (25)
. ou(t,
subject to u((atx) + Nu; A\ =0, t=10,T],
Additionally, the parameters)\ turn into parameters of the PINN
[12].
Neural Networks for Solving Differential Equations 56/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

The loss function of the neural network i(t, x; @) consists of the two
components: the error of the fit to the data, and the violation of the
PDE constraint multiplied by a weighting factor .

N
minimize [(0,\) = 1 Z(an(e) —up)? +p <8u + Nu; A])

0, € (R",R™) N ot
(26)
The parameters) are learnt by being optimised along the
neural network parameters [12].
Neural Networks for Solving Differential Equations 57/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

To train the neural network u(t, x; @) and discover the parameters \,
data is needed:

Collocation points, Nppe: scattered points within the domain where the PDE
is enforced;

Initial/boundary points, N,: points where the solution is known to enforce
initial and boundary conditions, as well as to discover the unknown
parameters \.
Unlike the problem of ’data-driven solutions”, in this case
some training data from the solution is needed, which can be
experimental data [12].

Neural Networks for Solving Differential Equations 58/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - Diffusion Equation

Consider a diffusion equation with an unknown parameter C and
Dirichlet boundary conditions [12]:

0 0? . .
B_L; = CO_XZ — e !(sin(mx) — n*sin(mx)), x € [-1,1],t € [0,1],
u(0,x) = sin(nx),
u(t,—1) =u(t,1) =0.
Neural Networks for Solving Differential Equations 59/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - Diffusion Equation

First, we define the penalty term by rewriting the PDE and build the
loss function [12]:

Ny

1
minimize [(0)= — (Un(0) — u)2+
e y ; n " (27)
Nppe 9
1 ou d*u ., . .
Npoe ; (E —(oete (sin(mx) + 7* sm(m()))

Then we proceed by approximating u(t, x) by a neural network [12].

Neural Networks for Solving Differential Equations 60/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - Diffusion

Then we start by defining the geometry and time domain of the
problem using the built-in classes [12, 9]:

geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)

61/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Neural Networks for Solving Differential Equations

Next, we code the PDE [12, 9]:

def pde(x, u):
du_t = dde.grad.jacobian(u, x, i=0, j=1)
du_xx = dde.grad.hessian(u, x, i=0, j=0)

return (dy_t - C x dy_xx + tf.exp(-x[:, 1:])
* (tf.sin(np.pi * x[:, 0:1]) - np.pi **x 2
* tf.sin(np.pi * x[:, 0:1])))

The first argument x is a vector in which the first component is the
x-coordinate and the second component is the t-coordinate. The
second argument u is the output given by the neural network. Cis
an unknown parameter that will be initialised as 2.0 [12, 9].

C = dde.Variable(2.0)

Neural Networks for Solving Differential Equations 62/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - Diffusion Eq

Then we define the initial and boundary conditions using the
geometry and time domains previously defined:

bc = dde.dicbc.DirichletBC(geomtime, func,
lambda _, on_boundary: on_boundary)

ic = dde.icbc.IC(geomtime, func, lambda _,
on_initial: on_initial)

The reference solution is [12, 9]:

def func(x):
return np.sin(np.pi * x[:, 0:1]) * np.exp(-x[:, 1:1)

Neural Networks for Solving Differential Equations 63/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

In this problem, we provide extra information on some training
points so the parameter C can be identified from these
observations. We generate 10 equally-spaced input points (x, t),
with x € [—1, 1] and t = 1, using the corresponding exact solution
[12].

observe_x = np.vstack((np.linspace(-1, 1, num=10),
np.full((10), 1))).T

observe_y = dde.1icbc.PointSetBC(observe_x,
func(observe_x), component=0)

64/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Neural Networks for Solving Differential Equations

Now, we have specified the geometry, PDE, initial and boundary
conditions, and extra observations. Thus we define the
time-dependent PDE problem using the built-in function [12, 9]:

data = dde.data.TimePDE(geomtime, pde,

[bc, ic, observe_y],

num_domain=40, num_boundary=20, num_initial=10,
anchors=observe_x, solution=func, num_test=10000)

The number 40 is the number of training points sampled inside the
domain, Nppe. The number 20 is the number of training points
sampled on the boundary, 10 are the initial points for the initial
conditions, furthermore anchors is the additional training points N,
[12,9].

Neural Networks for Solving Differential Equations 65/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Next we define a neural network architecture. Here, we use a fully
connected neural network of depth 4 and width 32 [12, 9]:

net = dde.nn.FNN([2] + [32] = 3 + [1], "tanh",
"Glorot normal")

Then we build the network, choose an optimiser and pass the
unknown parameter C as a trainable variable [12, 9]:

model = dde.Model(data, net)
model.compile("adam", lr=1le-3,
metrics=["12 relative error"],
external_trainable_variables=C)

Neural Networks for Solving Differential Equations 66/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Example - Diffu

on Eq

We then train the model for 50000 iterations and output C every
1000 iterations:

variable = dde.callbacks.VariableValue(C, period=1000)
losshistory, train_state = model.train(iterations=50000,
callbacks=[variable])

We also save and plot the best trained result and loss history [12, 9]:

dde.saveplot(losshistory, train_state, issave=True
, isplot=True)

Neural Networks for Solving Differential Equations 67/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

= What happens if we change the number of training points inside the
domain? What about in the inital and boundary conditions?

= Use PINNs to discover o, p, B for the following Lorenz system:

dx dy dz
P O'(y—X), E _X(p Z) Y, dt =Xy ﬂza te [0?3]

x(0) =-8, y(0)=7, 2z(0)=27.

The true values are 10, 15, and %, respectively.

Neural Networks for Solving Differential Equations 68/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Neural Networks for Modelling DE

= Challenges on Differential Equations Formulation for Describing Real-world
Systems

"

Neural Ordinary Differential Equations
= Hands-on with the Torchdiffeq Library

Neural Networks for Modelling Differential Equations 69/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Challenges on Formulating DEs

= Often the equations that model systems are unknown;
= When experimental data is available, mathematical models can be fitted;

> Traditional techniques require expert-knowledge and are a "trial and error”
process.

Neural Networks for Modelling Differential Equations 70/107
Cecilia Coelho, Luis Ferras and Bernd Zimmering

Neural Networks for Modelling DEs

p-%
=
I

+

N =

Neural networks are universal approximators [6];

Experimental data can be used to train a neural network to fit the data;
However, they fit time-independent functions to data [3];
Data has to be regularly-sampled for training [3];

OO R OAT

Neural Ordinary Differential Equations adjust a time-dependent function to
data, an ODE [3].

Neural Networks for Modelling Differential Equations 71/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

In Residual Networks, we consider the following transformation of a
hidden state from layer t to layer t + 1:

hi 1 = hi + fi(he, 6), (28)

where h; € R9 is the hidden state at layer t, ; represents the
parameters of the network determined by the learning process (the
weights and biases), and f; : R? — R is a differentiable function.
Assuming we have a finite number of layers, for the residual
forward problem presented in (28) to be stable, it is recommended
to control the variation of f(h;, 8;) across iterations. Therefore,
introducing a positive constant 4, one can control the variation of f;:

heyy = hy+ 0fi(he, ;). (29)

Neural Networks for Modelling Differential Equations 72/107

a Coelho, Luis Ferras and Bernd Zimmering

This equation can be rewritten as:

heyr — he
4]
and taking the limit & — 0, we obtain the following ODE,

= ff(htvat)a (30)

dh(t)

5 = f(t.h(0),6(). (31)

defined over a certain time interval t € [ty, T] with T > ty. Note that
while it is indeed true that the parameter § provides a means to
regulate the stability of the forward problem (29), the stability is not
solely determined by § but also influenced by the variations in the
weights.

Eqg. (31) extends the discrete nature of the Residual Network, Eq.
(29), to a continuous model.

Neural Networks for Modelling Differential Equations 73/107

Coelho, Luis Ferras and Bernd Zimmering

Assume we have a collection of ordered data (N + 1 ordered
observations) x = {Xo, X1, ..., Xy}, which represent the state of
some dynamical system at discrete instants t; over the time interval
[to, T] (with ty = T). Eachx; = (x},x?,...,x9) € R9,i=0,...,Nis
associated with instant t;.
We assume that the given data can be modelled by the initial value
problem in Eq. (32). This allows us to determine the behaviour of
the dynamical system at any instant within the interval [ty, T] [3, 4].
dx(t)

ar f(t,x(t))

X(t()) = Xp, te [to,T].

(32)

Neural Networks for Modelling Differential Equations 74/107

oelho, Luis Ferras and Bernd Zimmering

® Data obtained experimentally or a priori
from a certain dynamical system

Fit to the data obtained by solving the
initial value problem:

/ N b (x@ _
3 3 , = fex(©)

@x ; (%6, %8) x(to) = X0, tE[ty,T]

n=ohad) m=Ghad) o

ty t t, ty t T time (t)

Figure 2: Fit of an ODE to data {xo, X1, X2, X3, X4 } obtained experimentally or
provided by a dynamical system. The blue symbols represent the data points,
while the orange line represents the fit obtained from the initial value problem
shown on the right. Each vector x; corresponds to a specific instant t;. The initial
value problem allows us to determine the behaviour of the dynamical system at
any instant within the interval [to, T] [3, 4].

75/107

elho, Luis Ferras and Bernd Zimmering

Neural Networks for Modelling Differential Equations

The problem is that neither the solution x(t) € RY nor the function
f(t,x(1)) : R x RY — R?are known (the ODE may be linear,
nonlinear, etc).

Neural ODEs provide a viable solution to approximate the initial
value problem (32) using only the data x = {xo, X1, ..., Xy} (the
ground truth in our Neural ODE).

Let h(t) be an approximation of x(t).

M) — fo(t.h(e).

h(to) =Xy te [to, T].

(33)

The right-hand side’s analytical expression (f(t, x(t))) is replaced by
a NN (denoted by fg(t, h(t))), where 0 represents the weights and
biases of the network [3, 4].

Neural Networks for Modelling Differential Equations 76/107

ho, Luis Ferras and Bernd Zimmering

To illustrate the Neural ODE, we assume that the numerical method
used to solve the initial value problem (33) is the explicit Euler
method. A mesh is defined for each interval [t;, tj 1],

i=0,...,N— 1. Therefore, given the initial condition h(ty) = xo, a
(uniform) mesh {t\, = mAt;: m =0, 1,..., M;} on an interval

[ti, tir1] with some integer M; and At := (tj 1 — t;)/M;, we compute
the numerical solution as (for the interval [to, t1]) [3, 4],

9t t9 9t

h(t9) = xo + Atfa(t), xo)
h(t)) = h(t)) + Atfo(t), (1))

h(t),) = h(tu_1) + Atfg(tu—1, h(tu—1).

Neural Networks for Modelling Differential Equations 77/107

0, Luis Ferras and Bernd Zimmering

Neural Ordinary Differential Equat

We can say that the Neural ODE consists of two main components: a
numerical ODE solver, and the neural network fy(t, h(t)) [3, 4].

It
interval [to,t:] interval [t1,t2] interval [ty-1, tn]

inputT input ? input Q

Neural
Network

" Neural
Network
fo

output /(. it)

Neural

Network

output fo(t, h(t),

Euler method Euler method

TA)

thyo B(th,-1))

tf o (tn-1.Rtn-))

ACEIC))

Compute the Loss function

Backpropagate - Minimise Loss - Update 8

Figure 3: Schematic of a Neural ODE iteration. Note that along the sequence of
figures (left to right) the NN fg (¢, h(t)) doesn’t change.

Neural Networks for Modelling Differential Equations 78/107

CeciliaCoelho, Luis Ferras and Bernd Zimmering

We can use both adaptive and fixed-step ODE solvers. When the
step size is explicitly specified At, the discretization takes place for
each sub-interval of observations [t;, ti 1] with the specified step
size yielding (tj11 — t;)/Attime steps [3, 4].

{ SR e
Al ’u:m (O] !

\

\ \

] : \
o7 = \
; / \
S P ' i
N | \
| VA NN W
" -+ ar

\ /

\ ty b fz/

\ /

Figure 4: Example of a typical mesh used in the numerical solution of Eq.
(33) for each interval [t;, tiy1],i = 0,...,N — 1, where t; is the time of
observation x; [4].

Neural Networks for Modelling Differential Equations 79/107

Luis Ferras and Bernd Zimmering

Neural Ordinary Differential Equations

Different numerical solvers can be used to obtain the numerical
solution of (33), for the time being, we will refer to a numerical
solver as ODESolve. Assumingi = 1,...,N and that that ty
corresponds to T, each state h(t;) is then numerically given by [3, 4],

h(t;) = ODESolve(fy, Xo, {t1, ..., tn}). (34)

80/107

CeciliaCoelho,Luis Ferras and Bernd Zimmering

Neural Networks for Modelling Differential Equations

Consider you have experimental data from a population growth.
Here, we will use the synthetic data fabricated earlier. We want to
model the dynamics using a Neural ODE [3, 4].

First, the torchdiffeq and torch modules are imported [4, 2]:

import torch

import torch.nn as nn

import torch.optim as optim
from torchdiffeq import odeint

With this Neural ODE we will be able to predict the population P at
each time instant given the initial condition:

true_y0 = torch.tensor([2.518629])

Neural Networks for Modelling Differential Equations 81/107

s Ferras and Bernd Zimmering

Example - Population Growth

Next, we define a neural network to approximate the right-hand
side of the ODE [4, 2]:

class ODEFunc(nn.Module):
def __init__(self):
super (ODEFunc, self).__init__()

self.net = nn.Sequential(nn.Linear(1l, 50),
nn.Tanh(), nn.Linear(50,50),
nn.ELU(), nn.Linear (50, 1))

for m in self.net.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0, std=0.1)
nn.init.constant_(m.bias, val=0)

def forward(self, t, y):
return self.net(y)

Neural Networks for Modelling Differential Equations 82/107

CeciliaCoelho, Luis Ferras and Bernd Zimmering

Example - Population Growth

Then we compile the network and choose an optimiser:

func = ODEFunc()
optimizer = optim.Adam(func.parameters(), lr=1e-5)

We define the time instants in which we want to know the solutions
(4,2]:

t = torch.linspace(0., 1, 500)

Neural Networks for Modelling Differential Equations 83/107

CeciliaCoelho, LuisFerras and Bernd Zimmering

Now, we have specified the network, optimiser and we have
training data available. Then we define the training loop:

for itr in range(l, 2000):
pred_y = odeint(func, true_y0, t, method='rk4")
loss = nn.MSELoss() (pred_y, true_y)

optimizer.zero_grad()
loss.backward()
optimizer.step()
for itr % 100 == 0:
print('Iter {:04d}|Loss {:.6f}'.format(itr, loss))

Here we specify the numerical method to be a fixed-step one and
print the loss value every 100 iterations [4, 2].

Neural Networks for Modelling Differential Equations 84/107

rras and Bernd Zimmering

> What happens if we change the numerical method from a fixed-step solver
to an adaptive-solver?

= Choose a known differential equation that is used to model a real system.
Solve it to create a synthetic dataset. Try using a Neural ODE to model the
data.

Neural Networks for Modelling Differential Equations 85/107

Cecilia Coelho, Luis Ferfas and Bernd Zimmering

= Physics-Informed Neural Networks versus Neural Ordinary Differential
Equations

= What’s Next?

Wrap-up 86/107

Cecilia Coelho; Luis Ferras and Bernd Zimmer

Wrap-up

PINNs

Mesh-independent;

Suitable for problems in
irregular or complex
domains;

Generalise to unseen data;

Computes at arbitrary times
directly;

Data-hungry;

Sensitive to hyperparameter
choices and NN architectures;
Computationally expensive to
train;

Lack transparency and
interpretability.

Numerical Methods

Some methods rely on
structured grids;

Computationally expensive in
high dimensions;

Iterative method;
Work with limited data;
Established guidelines;

Computationally efficient for
some problems;

Well-understood algorithms.

87/107

and Bernd Zimmering

Neural ODEs vs Traditional NNs

Neural ODEs

= Canhandle
irregularly-sampled data; Traditional NNs

= Allows predictions at any % Only handles
pointin time and regularly-sampled data;
discretisation; o

> Makes predictions based on

= Computationally intensive discrete time steps;
due to solving differential " ot .
equations at each training More straightforward training
iteration; process.

= May be unstable due to the
numerical solver inside.

Wrap-up 88/107

Cecilia Coelho, Luis Ferrasand Bernd Zimmering

What’s Next?

Photo: Florian Berger / Unsplash

Learning families of solutions with Neural Operators [7]
Learning in Fourier [8] or Laplace space [5, 1, 16]
Neural ODEs combined with ODE-RNN, Latent ODE [3, 13]

Learning other classes, e.g. integro-differential [14] and fractional equations
[4,15]

O ORTOAS

What’s Next? 90/107

Cecilia Coelho, Luis Ferrasand Bernd Zimmering

A PINN is used to get one solution of a problem. What if you change
the parameters (e.g. diameter D)?

PINNs need to compute a new solution for that. So how can we
learn a mor general model?

What’s Next? 91/107

The impulse response can be thought as the reaction of a system
for a very short and strong impulse (e.g. a drop on water)

We use PDE to describe the wave. For a fixed point (e.g. if we
measure level sensor) we use an ODE.

What’s Next? 92/107

Drive a first-order ODE with input f(t):
U'(t) +au(t) = f(t), u(0) =0, a > 0.
Its impulse response (response to a unit-area impulse at t=0) is
h(t) = e~ " 1;>0.

Then the whole output is the convolution of input with h:

u(t) = (hxf(t) = t e—alt=s) f(s) ds.

0 v
kernel / impulse response

Read: the kernel e=9(t=%) says how strongly a past input at time s
influences u at time t.
Impulse = Dirac §(t): “infinite peak, unit area”.

What’s Next? 93/107

The convolution can be seen as an integral operator parameterized by a:
(Goh)(t) = /Oth(t,s; a) f(s) ds, h(t,s; a) = e (=) 1.
General operator view (ODE/PDE).
u) = (GNW = [ey)y + olx o).

c represents physical parameters, boundary conditions, or geometry.
For homogeneous BCs, ¢ =0. In time-dependent problems, x may include time,
and the kernel may integrate over space and/or time.

What’s Next? 94/107

Learn the Neural Operator [7] by learning its kernel:

(Kof) () = o WA+ [molxy) () dy + ().

local (pointwise) nonlocal (global mixing)

Intuition: kg is a learned impulse response.
If the mapping is (near-)linear, set ¢ = Id and optionally W=0.
What can fencode?
Coefficients [material: a(x) (conductivity, permeability)
Forcing / load: f(x, t) (PDE) or f(t) (ODE)
Boundary [initial data: g on 092, up in Q2

What’s Next?

95/107

Neural Operator network (stacked)

Start withzy = f. Forlayers £ =10,...,L — 1:

Ze (X) = U(W[2(x) + / Ko.0(%,y) 2e(y) dy + b,_,(x)).

Output: & = z; (or an extra linear readout).
Linear case: o = Id, W, optional.

What’s Next? 96/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

Train once, reuse: fast predictions for many new inputs (no
re-optimisation).

Resolution/mesh agnostic: train on one grid, evaluate on another. On
structured grids (spectral variants) this is typical; for arbitrary
meshes/geometries use graph/mesh operator designs and encode
geometry.

Learn a family: generalise across coefficients/BCs/forcings seen in training.

Caveat: needs paired data (f, u); out-of-distribution generalisation is not
guaranteed.

What’s Next? 97/107

u(z) = /n(z,z’)f(z’)dz’,

where z can be x (space), t (time), or (x, t) (spacetime). Different neural
operators approximate this integral in different domains.

While the landscape of Neural Operators is wide, the next slides
introduce two interesting examples.

What’s Next? 98/107

Idea. A spatial FFT turns convolution into pointwise multiplication
in k-space; time stays as channels.
Operator view (per t).

~

Uk, t) = Ro(k, t) flk,t) with = Fy(f)

FNO are normally stacked in layers:

Viei(x, t) = U(W/V[(X, t) + fx_l(Rg’/ fX[V/])).

Fast: convolution to multiplication; few low/mid modes suffice. Valid when:
roughly shift-invariant spatial kernel on a uniform grid; boundaries via
padding/periodisation.

What’s Next? 99/107

Idea. Atemporal Laplace transform turns causal time-convolution
into pointwise multiplication in s-space; space stays as channels.
Operator view (per x).

Li[u](x,s) = Ho(x,s) L¢[f](x,s) with u="fxh;

LNO a also stacked in layers:

Vi (x, t) = O’(W/V[(X, t) + £;1(H9’[,Cdv;])).

Why fast: convolution to multiplication.

Valid when: roughly time-shift-invariant causal kernel on a uniform time grid.
Relation to FNO: same spectral trick, but along time; can be paired with spatial
FFT.

What’s Next? 100/107

Staying in the Laplace Domain: from
fields to sensor signals

Photo by Thomas T on Unsplash

Neural Laplace [5] skips explicit ODE time-stepping by learning in
the Laplace domain and performing £~! numerically.

Time Domain . . Laplace Domain
V(s) = L{y(t)} = jo e Sty(t)dt, seC

X k B
08 (]
| Query gr\d Yen
¥ (s)| 05 v

3 i 5 o o
Time t sed

Amplitude

y(t) = L)} = o [T V() et ds e

250
2 ?
- o)
ri s "“%
dy(t
[,{ y()}

=g y(s) o y(O) Important Properties

Delays are easy to handle
Derivates to

£{CoD?y(t)} = 52Y(s) — s¥ 1y (0) Algebraic Eq. Lyt =)} =e7*7V(s)

Key idea: The Laplace transform turns derivatives into (complex)
algebra and convolutions into multiplication.

What’s Next?

102/107

Laplace Net [16] is a solver free sequence to sequence model. It
learns an input x(t) output y(t) mapping based on an historical
sequence. It is a modular architecture that can also model delays
and memory.

g> Transfer Function H(s) Y(s) Fourier
f’i-t(s) (8:2) Inverse LT
z
P P(s —_—>
|Encoder fenc l—)| f‘P(s) lﬁ) tN+M

S S S S N Y *

tN+M
History Forecast

Figure 5: Architecture of Laplace-net. Blue marks learnable parts. Complex values
are purple.

What’s Next? 103/107

Thank you for your time and patience!

104/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

This work was funded by Fundagao para a Ciéncia e Tecnologia (Portuguese Foundation for
Science and Technology) through CMAT projects UIDB/00013/2020 and the support of the
High-Performance Computing Center at the University of Evora funded by FCT I.P. under the
project “OptXAl: Constrained optimisation in NNs for Explainable, Ethical and Greener Al”,
reference 2024.00191.CPCA.A1, platform Vision, and national funds through the FCT/MCTES
(PIDDAC)under the project 2022.06672.PTDC—iMAD (Improving the Modelling of Anomalous
Diffusion and Viscoelasticity: solutions to industrial problems), DOI
10.54499/2022.06672.PTDC (https://doi.org/10.54499/2022.06672.PTDC);and
by the projects LA/P/0045/2020 (ALiCE), UIDB/00532/2020, and UIDP/00532/2020 (CEFT). It
was also financially supported by Fundagdo “la Caixa”|BPI and FCT through project
PL24-00057: “Inteligéncia Artificial na Otimizacdo da Rega para Olivais Resilientes as
Alteragdes Climaticas”. C. Coelho would also like to thank the KIBIDZ project funded by
dtec.bw—Digitalization and Technology Research Center of the Bundeswehr; dtec.bw is
funded by the European Union—NextGenerationEU. B. Zimmering would also like to thank
the LailLa project funded by dtec.bw—Digitalization and Technology Research Center of the
Bundeswehr;

A

¥ Z [@PORTO (¢ o f T QALiICE fct

Varaav4
7

FEUP FACULDRDE DE EcenHARA
IDADE DO PORTO .

@ REPUBLICA
&~ PORTUGUESA

105/107

https://doi.org/10.54499/2022.06672.PTDC

References

[11 Qianying Cao, Somdatta Goswami, and George Em Karniadakis. “Laplace Neural Operator for Solving
Differential Equations”. In: Nature Machine Intelligence 6.6 (June 2024), pp. 631-640. ISSN: 2522-5839. DOI:
10.1038/542256-024-00844-4. URL:
https://www.nature.com/articles/s42256-024-00844-4 (visited on 12/25/2024).

2] Ricky T. Q. Chen. torchdiffeq. 2018. urL: https: //github.com/rtqgichen/torchdiffeq.

[3] Ricky TQ Chen et al. “Neural ordinary differential equations”. In: Advances in neural information processing
systems 31 (2018).

[4] C. Coelho, M. Fernanda P. Costa, and L.L. Ferras. “Neural fractional differential equations”. In: Applied
Mathematical Modelling 144 (2025), p. 116060. pol: 10.1016/j .apm.2025.116060.

[5] Samuel I. Holt, Zhaozhi Qian, and Mihaela van der Schaar. “Neural Laplace: Learning Diverse Classes of
Differential Equations in the Laplace Domain”. In: Proceedings of the 39th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri et al. Proceedings of Machine Learning Research. PMLR, Dec. 2021,
p.88118832. URL: https://proceedings.mlr.press/v162/holt22a.html.

(6] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are universal
approximators”. In: Neural networks 2.5 (1989), pp. 359-366.

[7] Nikola Kovachki et al. “Neural operator: Learning maps between function spaces with applications to pdes”. In:
Journal of Machine Learning Research 24.89 (2023), pp. 1-97.

[8] Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2020. pol:
10.48550/ARXIV.2010.08895. URL: https://arxiv.org/abs/2010.08895 (visited on
10/23/2025).

[9] Lu Lu et al. “DeepXDE: A deep learning library for solving differential equations”. In: SIAM review 63.1 (2021),
pp. 208-228.

[10] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[11] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations”. In:
Journal of Computational physics 378 (2019), pp. 686-707. 106/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

https://doi.org/10.1038/s42256-024-00844-4
https://www.nature.com/articles/s42256-024-00844-4
https://github.com/rtqichen/torchdiffeq
https://doi.org/10.1016/j.apm.2025.116060
https://proceedings.mlr.press/v162/holt22a.html
https://doi.org/10.48550/ARXIV.2010.08895
https://arxiv.org/abs/2010.08895

References

[12] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics informed deep learning (part i): Data-driven
solutions of nonlinear partial differential equations”. In: arXiv preprint arXiv:1711.10561 (2017).

[13] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. “Latent ordinary differential equations for
irregularly-sampled time series”. In: Advances in neural information processing systems 32 (2019).

[14] Emanuele Zappala et al. “Neural integro-differential equations”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 37.9. 2023, pp. 11104-11112.

[15] Bernd Zimmering, Cecilia Coelho, and Oliver Niggemann. “Optimising Neural Fractional Differential Equations
for Performance and Efficiency”. In: Proceedings of the 1st ECAl Workshop on “"Machine Learning Meets Differential
Equations: From Theory to Applications”. Ed. by Cecilia Coelho et al. Vol. 255. Proceedings of Machine Learning
Research. PMLR, Oct. 2024, pp. 1-22. URL:
https://proceedings.mlr.press/v255/zimmering24a.html.

[16] Bernd Zimmering et al. “Breaking Free: Decoupling Forced Systems with Laplace Neural Networks”. In: Machine
Learning and Knowledge Discovery in Databases. Research Track. Ed. by Rita P. Ribeiro et al. Cham: Springer
Nature Switzerland, 2026, pp. 252-269. ISBN: 978-3-032-06109-6.

107/107

Cecilia Coelho, Luis Ferras and Bernd Zimmering

https://proceedings.mlr.press/v255/zimmering24a.html

	Outline of the Tutorial
	Informations
	Introduction to Differential Equations
	Introduction to Differential Equations
	Introduction to Differential Equations
	Introduction to Differential Equations
	Introduction to Differential Equations
	Introduction to Differential Equations
	Introduction to Differential Equations
	Introduction to Differential Equations
	Neural Networks for Solving Differential Equations
	Neural Networks for Solving Differential Equations
	Physics-Informed Neural Networks

	Neural Networks for Modelling Differential Equations
	Neural Ordinary Differential Equations

	Wrap-up
	What's Next?
	

	fd@rm@0:

